

Curriculum Structure and Curriculum Content for the Batch: 2021-25

School: Computer Science and Engineering

Program: BE- Computer Science and Engineering

Table of Contents

Vision and Mission of KLE Technological University3
Vision and Mission Statements of the School / Department4
Program Educational Objectives/Program Outcomes and Program-Specific Objectives5
Curriculum Structure-Overall
Curriculum Structure-Semester wise7
Semester - I
Semester - II
Semester- III9
Semester- IV
Semester- V
Semester- VI
Semester- VII
Semester- VIII
List of Open Electives
List of Program Electives
Curriculum Content- Course wise19

Vision and Mission of KLE Technological University

Vision

KLE Technological University will be a national leader in Higher Education–recognised globally for innovative culture, outstanding student experience, research excellence and social impact.

Mission

KLE Technological University is dedicated to teaching that meets highest standards of excellence, generation and application of new knowledge through research and creative endeavors.

The three-fold mission of the University is:

- To offer undergraduate and post-graduate programs with engaged and experiential learning environment enriched by high quality instruction that prepares students to succeed in their lives and professional careers.
- To enable and grow disciplinary and inter-disciplinary areas of research that build on present strengths and future opportunities aligning with areas of national strategic importance and priority.
- To actively engage in the Socio-economic development of the region by contributing our expertise, experience and leadership, to enhance competitiveness and quality of life.

As a unified community of faculty, staff and students, we work together with the spirit of collaboration and partnership to accomplish our mission.

Vision and Mission Statements of the School / Department

Department Vision

The KLE Tech- School of Computer Science will excel and lead in education, research and innovation in computing and information technology, contributing to the evolving needs of the world we live in.

Department Mission

- To foster a dynamic academic environment with cutting edge curriculum and innovative educational experience to prepare graduates to succeed and lead in a wide range of computing and information technology businesses and occupations.
- To be at the forefront of research through new and exciting innovations leading to the future of computing technologies.
- To collaborate within and beyond discipline to create solutions that benefit humanity and society.

Program Educational Objectives/Program Outcomes and Program-Specific Objectives

Program Educational Objectives -PEO's

PEO: 1. Graduates will demonstrate peer recognized technical competency to solve analyze, design, develop, deploy and maintain computing solutions for contemporary problems.

PEO: 2. Graduates will demonstrate leadership and initiative to advance professional and organizational goals with commitment to ethical standards of profession, teamwork and respect for diverse cultural background.

PEO: 3. Graduates will be engaged in ongoing learning and professional development through pursuing higher education and self-study.

PEO: 4. Graduates will be committed to creative practice of engineering and other professions in a responsible manner contributing to the socio-economic development of the society.

Program Outcomes-PO's

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

PO 2: Problem analysis: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3: Design/Development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

PO 4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO 6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10: Communication: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

PO 11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12: Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Objectives -PSO's

PSO 1: Domain-specific knowledge: An ability to apply techniques to develop computer based solutions in the domain of data, system and network engineering.

PSO 2: Software System Construction: Apply design and development principles in the construction of software systems of varying complexity.

Curriculum Structure-Overall

Sem	ester				То	tal Program Credits	:176.5	Year: 202	21-25
	I	II	III	IV	V	VI	VII	VI	11
	Single Variable Calculus 18EMAB101 (4-1-0)	Multivariable Calculus 18EMAB102 (4-1-0)	Graph Theory and Linear Algebra 15EMAB204 (4-0-0)	Applied Statistics with R 20EMAB209 (3-1-0)	Software Engineering 22ECSC301 (3-0-0)	Computer Networks-2 23ECSC303 (3-0-0)	Big Data & Analytics 17ECSC401(2-0-1)	PE-6 XXECSE4X X (3-0-0)	Industry Training 18ECSI4
	Engineering Physics 15EPHB101 (3-0-0)	Engineering Chemistry 15ECHB102 (3-0-0)	Discrete Mathematical Structures 19ECSC202 (3-1-0)	Microcontroller: Programming & Interfacing 21ECSC206 (1-0-3)	Computer Networks-1 19ECSC302(3-1-0)	Cloud Computing 23ECSC305(2-0-1)	Information Security 20ECSC402(2-0-1)	OE XXECSO4X X(3-0-0)	93 (0-0-6)
de	Engineering Mechanics 15ECVF101 (4-0-0)	Problem Solving with Data Structures 18ECSP102 (0-0-3)	Computer Organization and Architecture 21ECSC201 (3-0-1)	Object Oriented Programming 20ECSC204 (3-0-0)	System Software 17ECSC302 (3-0-0)	PE-2 XXECSE3XX (3-0-0)	PE-4 XXECSE4XX (3-0-0)	Capstone 20ECSW402	•
course code	C Programming for Problem Solving 18ECSP101 (0-0-3)	Engineering Exploration 15ECRP101 (0-0-3)	Data Structures and Algorithms 20ECSC205 (4-0-0)	Principles of Compiler Design 19ECSC203 (3-1-0)	Web Technologies Lab 21ECSP304 (0-0-2)	PE-3 XXECSE4XX (3-0-0)	PE-5 XXECSE4XX (3-0-0)	Project 20 (0-0-	
with	Basic Electrical Engineering 18EEEF101 (3-0-0)	Basic Electronics 18EECF101 (4-0-0)	Database Management System 15ECSC208 (4-0-0)	Operating System Principles and Programming 22ECSC202 (4-1-0)	Machine Learning 22ECSC306 (3-0-1)	Computer Networks Lab 20ECSP305 (0-0-1.5)	Senior Design Project 20ECSW401 (0-0-6)		
Course	Design Thinking for Social Innovation 20EHSP101 (0-1-1)	Basic Mechanical Engineering 15EMEF101 (2-1-0)	Data Structures and Algorithms Lab 19ECSP201 (0-0-2)	Exploratory Data Analysis 21ECSC210 (2-0-2)	System Software Lab 19ECSP302 (0-0-1.5)	Minor Project-1 23ECSW303 (1-0-4)	CIPE 15EHSA401 (Audit)		
	Applied Physics Lab 21EPHP101 (0-0-1)	Professional Communication 15EHSH101 (1-1-0)	Database Applications Lab 15ECSP204 (0-0-1.5)	Object Oriented Programming Lab 20ECSP203 (0-0-1.5)	Mini Project 15ECSW301 (0-0-3)	Minor Project-2 23ECSW304 (0-0-5)			
			Corporate Communication 22EHSC201(0.5-0-0)	Problem Solving & Analysis(22EHSH202)(0.5-0-0)	PE-1 XXECSE3XX (3-0-0)		Professional Aptitude & Logical Reasoning 23EHSA402(Audit)		
					Arithmetical Thinking & Analytical Reasoning (22EHSH301)(0.5-0-0)		Industry Readiness & Leadership Skills(23EHSA403) *Audit		
Cred its	21	23	24	26	24	23.5	18	17	7

Curriculum Structure-Semester wise

Semester - I

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
										(in hrs)
1	18EMAB101	Single Variable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	15EPHB101	Engineering Physics	BS	3-0-0	3	3	50	50	100	3 hours
3	15ECVF101	Engineering Mechanics	ES	4-0-0	4	4	50	50	100	3 hours
4	18ECSP101	C Programming for Problem solving	ES	0-0-3	3	6	80	20	100	3 hours
5	18EEEF101	Basic Electrical Engineering	ES	3-0-0	3	3	50	50	100	3 hours
6	20EHSP101	Design Thinking for Social Innovation	HSS	0-1-1	2	4	80	20	100	3 hours
7	21EPHP101	Applied Physics Lab	BS	0-0-1	1	2	80	20	100	3 hours
	TOTAL			14-2-5	21	28	440	260	700	

ISA: In Semester Assessment

ESA: End Semester Assessment

L: Lecture

T: Tutorials

Date:

Program Head

P: Practical

Semester - II

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
										(in hrs)
1	18EMAB102	Multivariable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	15ECHB102	Engineering Chemistry	BS	3-0-0	3	3	50	50	100	3 hours
3	18ECSP102	Problem Solving with Data Structures	ES	0-0-3	3	6	80	20	100	3 hours
4	15ECRP101	Engineering Exploration	ES	0-0-3	3	6	80	20	100	3 hours
5	18EECF101	Basic Electronics	ES	4-0-0	4	4	50	50	100	3 hours
6	15EMEF101	Basic Mechanical Engineering	ES	2-1-0	3	4	50	50	100	3 hours
7	15EHSH101	Professional Communication	HSS	1-1-0	2	3	50	50	100	3 hours
	TOTAL			14-3-6	23	32	410	290	700	

ISA: In Semester Assessment

ESA: End Semester Assessment

L: Lecture

T: Tutorials

Date:

Program Head

P: Practical

Semester- III

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
										(in hrs)
1	15EMAB204/	Graph Theory and Linear Algebra/	BS	4-0-0	4	4	50	50	100	3 hours
	*15EMAB233	Graph Theory and Calculus								
2	19ECSC202	Discrete Mathematical Structures	PC	3-1-0	4	5	50	50	100	3 hours
3	21ECSC201	Computer Organization and	PC	3-0-1	4	5	50	50	100	3 hours
		Architecture								
4	20ECSC205	Data Structures and Algorithms	PC	4-0-0	4	4	50	50	100	3 hours
5	15ECSC208	Database Management System	PC	4-0-0	4	4	50	50	100	3 hours
6	19ECSP201	Data Structures and Algorithms Lab	PC	0-0-2	2	4	80	20	100	3 hours
7	15ECSP204	Database Applications Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
8	22EHSC201	Corporate Communication	HSS	0.5-0-0	0.5	1	100	0	100	3hrs
	•	TOTAL		18.5-1-4.5	24	30	510	290	800	
ISA: In	A: In Semester Assessment ESA: End Semester Asses			L : Le	cture	T : Tut	orials	F	•: Practica	l

*Note Graph Theory and Calculus (15EMAB233) offered only for diploma students

Date:

Semester- IV

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
										(in hrs)
1	20EMAB209/	Applied Statistics with R / Vector	BS	3-1-0/	4	5/4	50	50	100	3 hours
	*15EMAB243	calculus and Linear Algebra		4-0-0						
2	21ECSC206	Microcontroller: Programming and	РС	1-0-3	4	7	100	00	100	3 hours
		Interfacing								
3	20ECSC204	Object-Oriented Programming	РС	3-0-0	3	3	50	50	100	3 hours
4	19ECSC203	Principles of Compiler Design	PC	3-1-0	4	5	50	50	100	3 hours
5	22ECSC202	Operating System Principles and	РС	4-1-0	5	6	50	50	100	3 hours
		Programming								
6	21ECSC210	Exploratory Data Analysis	РС	2-0-2	4	6	80	20	100	3 hours
7	20ECSP203	Object Oriented Programming Lab	РС	0-0-1.5	1.5	3	80	20	100	3 hours
8	22EHSH202	Problem Solving & Analysis	HSS	0.5-0-0	0.5	1	100	0	100	3 hours
	TOTAL			16.5-3-6.5/	26	36/35	560	240	800	
				17.5-2-6.5						
SA: In	A: In Semester Assessment ESA: End Semester Asses		ssment	L: Lec	ture	T: Tut	orials	P:	Practical	•

*Note: Vector calculus and Linear Algebra (15EMAB243) offered only to diploma students

Date:

Semester- V

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
										(in hrs)
1	22ECSC301	Software Engineering	PC	3-0-0	3	3	50	50	100	3 hours
2	19ECSC302	Computer Networks-1	PC	3-1-0	4	5	50	50	100	3 hours
3	17ECSC302	System Software	PC	3-0-0	3	3	50	50	100	3 hours
4	22ECSC306	Machine Learning	PC	3-0-1	4	5	80	20	100	3 hours
5	21ECSP304	Web Technologies Lab	PC	0-0-2	2	4	80	20	100	3 hours
6	19ECSP302	System Software Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
7	15ECSW301	Mini Project	PW	0-0-3	3	6	50	50	100	3 hours
8	XXECSE3XX	Professional Elective-1	PE	3-0-0	3	3	50	50	100	3 hours
9	*22EHSH301	Arithmetical Thinking &	HSS	0.5-0-0	0.5	1	100	0	100	3 hours
		Analytical Reasoning								
10	*15EMAB303	Statistics and probability	BS	3-0-0	3	3	50	50	100	3 hours
	·	TOTAL		15.5-1-7.5/	24/27	33/36	590/640	310/360	900/1000	
				18.5-1-7.5						

ISA: In Semester Assessment

ESA: End Semester Assessment

L: Lecture T: Tutorials P: Practical

Note: * Statistics and probability (15EMAB303) only for diploma students

Date:

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
										(in hrs)
1	23ECSC303	Computer Networks-2	PC	3-0-0	3	3	50	50	100	3 hours
2	23ECSC305	Cloud Computing	PC	2-0-1	3	4	50	50	100	3 hours
3	XXECSE3XX	Professional Elective-2	PE	3-0-0	3	3	50	50	100	3 hours
4	XXECSE4XX	Professional Elective-3	PE	3-0-0	3	3	50	50	100	3 hours
5	20ECSP305	Computer Networks Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
6	23ECSW303	Minor Project-1	PW	1-0-4	5	9	50	50	100	3 hours
7	23ECSW304	Minor Project-2	PW	0-0-5	5	10	50	50	100	3 hours
	TOTAL				23.5	35	380	320	700	
ISA: Ir	n Semester Asse	ssment ESA : End Semester Ass	essment	L : L	ecture	Т	: Tutoria	ls	P: Pra	ctical

Semester- VI

Date:

Semester- VII

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
										(in hrs)
1	17ECSC401	Big Data & Analytics	PC	2-0-1	3	4	50	50	100	3 hours
2	20ECSC402	Information Security	PC	2-0-1	3	4	50	50	100	3 hours
3	XXECSE4XX	Professional Elective-4	PE	3-0-0	3	3	50	50	100	3 hours
4	XXECSE4XX	Professional Elective-5	PE	3-0-0	3	3	50	50	100	3 hours
5	20ECSW401	Senior Design Project	PW	0-0-6	6	12	50	50	100	3 hours
6	15EHSA401	<u>CIPE(Audit)</u>	HSS	0-0-0	0	2	50	50	100	3 hours
7	*23EHSA403	Industry Readiness &	HSS	0-0-0	0	1	100	0	100	3hours
		Leadership Skills(Audit)								
8	*23EHSA402	Professional Aptitude &	HSS	0-0-0	0	3	50	50	100	3 hours
		Logical Reasoning(Audit)								
		TOTAL		10-0-8	18	28	300	300	600	
A: Ir	n Semester Asses	sment ESA : End Semester	Assessment	L: Lec	ture T :	Tutorials	P: Practical		II	

*Industry Readiness & Leadership Skills (23EHSA403) and *Professional Aptitude & Logical Reasoning (23EHSA402) are audit courses.

Date:

Semester- VIII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	XXECSE4XX	Professional Elective-6	PE	3-0-0	3	3	50	50	100	3 hours
2	XXECSO4XX	Open Elective	OE	3-0-0	3	3	50	50	100	3 hours
3*	18ECSI493	Industry Training	PW	0-0-6	6	12	50	50	100	3hours
4	20ECSW494	Industry Project	PW	0-0-11	11	22	50	50	100	3 hours
	20ECSW402	Capstone Project		0-0-11	11	22	50	50	100	5 Hours
		TOTAL		6-0-17	17	34	100	100	200	
ISA: Ir	n Semester Ass	essment ESA:	End Semest	er Assessn	nent	L	Lecture	T: Tutoria	al	P: Practical

*Note students can either choose (1, 2 & 4(Capstone project) or (3 & 4(Industry project).)

Date:

Semester		II	III	IV	V	VI	VII	VIII	Total
Credits	21	23	24	26	24	23.5	18	17	176.5

List of Open Electives

Sr. No	Name of the Course	Course Code
1	Distributed and Cloud Computing (2-0-1)	15ECSO401
2	Database Management System (3-0-0)	15ECSO402
3	Software Engineering (3-0-0)	15ECSO403
4	High Performance Computing for Engineering Applications (3-0-0)	15ECSO404
5	Essential of IT (3-0-0)	15ECSO405
6	Big Data Analytics (3-0-0)	18ECSO401

List of Program Electives

Sr. No	Name of the Course	Course Code			
	Professional Elective – 1, 2 & 3	l			
Data Engineering					
1	Computer Vision (2-0-1)	18ECSE301			
2	Algorithmic Problem Solving (2-0-4)	23ECSE309			
3	Semantic Web (3-0-0)	19ECSE303			
4	Signals & Systems (3-0-0)	21ECSE313			
5	Fundamentals of Image & Video Processing (2-0-1)	21ECSE312			
6	Neural Networks & Deep Learning (2-0-1)	21ECSE314			
7	Natural Language processing with Neural Network	23ECSE315			
	<u>models(</u> 3-0-0)				
	Networking	1			
1	<u>DevOps</u> (1-0-2)	23ECSE310			
2	Data Integration and Cloud Services (0-0-3)	21ECSE332			
3	Multimedia Networks (3-0-0)	21ECSE311			
4	Internet of Things (3-0-0)	22ECSE303			
5	Block chain and Distributed Ledgers (2-0-1)	23ECSE316			
	Systems Engineering				
1	Parallel Computing (3-0-0)	17ECSE307			
2	Quantum Computing (3-0-0)	17ECSE306			
3	Embedded Intelligent Systems (1-0-2)	23ECSE302			
4	The ARM Architecture (2-1-0)	19ECSE302			
5	Robotic Process Automation Design & Development (3-0-0)	20ECSE301			
	Professional Elective – 4, 5 6				
	Data Engineering				
1	Social Network Analysis (3-0-0)	18ECSE402			
2	Natural Language Processing (2-0-1)	22ECSE403			
3	Fuzzy Set Theory (3-0-0)	19ECSE402			

KLE Technological University Creating Value, Leveraging Knowledge

4	Advanced computer graphics (0-0-3)	22ECSE433
5	Advanced computer vision(0-0-3)	22ECSE434
6	Generative AI (2-0-1)	24ECSE458
7	Deep Learning for Computer Vision (NPTEL-Swayam) (3-0-0)	24ECSE404
8	Social Network Analysis (NPTEL-Swayam) (3-0-0)	24ECSE405
9	E-Commerce Technologies (NPTEL-Swayam) (3-0-0)	24ECSE407
10	Responsible & Safe AI Systems (NPTEL-Swayam) (3-0-0)	24ECSE408
	Networking	
1	Unix Network Programming (3-0-0)	18ECSE404
2	Software Defined Networks (3-0-0)	20ECSE405
3	Cyber Security (2-0-1)	19ECSE401
4	Mobile and Wireless Networks (3-0-0)	20ECSE412
5	Wireless Communication Networks (3-0-0)	22ECSE415
6	Network Security (3-0-0)	23ECSE417
7	AWS Cloud Fundamentals (3-0-0)	23ECSE418
8	Cyber Security and Privacy (NPTEL-Swayam) (3-0-0)	24ECSE401
9	Introduction to Cyber Security (NPTEL-Swayam) (3-0-0)	24ECSE406
	Systems Engineering	
1	Software Testing (3-0-0)	18ECSE407
2	<u>C# Programming & .Net</u> (3-0-0)	18ECSE409
3	Advanced Parallel Computing (3-0-0)	18ECSE408
4	Software Architecture and Design Thinking (3-0-0)	18ECSE410
5	Model Thinking (3-0-0)	18ECSE411
6	Compiler Optimization for HPC	22ECSE431
7	Quantum Computing fundamental(3-0-0)	22ECSE416
8	Software Testing (NPTEL-Swayam) (3-0-0)	24ECSE402
9	Design & Implementation of Human-Computer Interfaces (NPTEL-Swayam) (3-0-0)	24ECSE403

Curriculum Content- Course wise

Semester - I

		Semester - I	1		
Program: Bachelor of Engineering Semester - I					
Cours	e Title: Single Variable	Calculus	Course Code: 18EM	AB101	
L-T-P:	r-P: 4-1-0 Credits: 05 Contact Hours: 6hrs/we		/week		
ISA M	SA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teach	Teaching Hours: 50 Tutorial/Practical: 28hrs Examination Duratio				
		Unit I			
	Introduction to Ma	athematical Modeling: Wha	t is Mathematical		
1	modeling, why Mathe	ematical modeling, use of Matl	nematical modeling,	04 hrs	
-	Process of mathema	tical modeling, types of mo	deling with simple		
	examples.				
	2. Functions, Graph	s and Models: Functions, t	ypes of functions,		
2	transformations and n	nodels (Linear, exponential, trig	onometric).	05 hrs	
	MatLab: Graphing fun	ctions, Domain-Range and Inter	rpreting the models		
	3. Calculus of functio	ns and models: Limit of a fund	ction, Infinite limits-		
	graph, Continuity a	nd discontinuity, Intermedia	te value theorem		
	statement, Roots of the equation using Bisection Method and Newton-				
_	Raphson Method				
3	Interpretation of derivative as a rate of change, All the rules of derivatives				
	(List only), Maxima, Minima and optimization problems. Curvature and				
	Radius of Curvature, Indeterminate forms, L- Hospital's rule-Examples				
	MatLab: optimization	problems. Curvature problems			
	1	Unit II			
	4. Infinite Series: Defi	nition, Convergence of series, 1	ests of convergence		
	– p-series, Alternating	series. Power series, radius of c	onvergence, Taylor's	06 hrs	
4	and Maclaurin's series, Applications of Taylor's and Maclaurin's series				
	MatLab: Convergence	of series			
	5. Integral calculus: Tr	acing of standard curves in Carl	esian form.		
	5. Integral calculus: Tracing of standard curves in Cartesian form, Parametric form and Polar form; Beta and gamma function, relation				
	between them, evaluation of integrals using Beta and gamma functions;				
5		c length, Area, Volume and surf	-	14 hrs	
-		•	•	-	
	parametric and polar curves). Approximate integration- Trapezoidal rule, Simpson's 1/3 rule				
MatLab: problems on arc length, area, volume and surface area.					
		0.,,			

6	 6. Ordinary differential equations of first order: (a) Introduction to Initial Value problems. Linear and Bernoulli's equations, Exact equations and reducible to exact form, Numerical solution to Initial Value problems-Euler's method, Modified Euler's method and Runge-Kutta method (b) Applications of first order differential equations-Orthogonal trajectories growth and decay problems, mixture problems, Electrical circuits, falling bodies. MatLab: Solve differential equations. 	10 hrs			
Text Books1. Early Transcendentals Calculus- James Stewart, Thomson Books, 7e 2010.					
Reference Books:					

- 1. Hughues- Hallett Gleason, Calculus Single and Multivariable, 4ed, Wiley India, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010.

BACK

Program: Bachelor of Engineering Semester - I			Semester - I		
Course Title: Engineering Physics Course Title: Engineering Physics			Course Code: 15EPHE	8101	
L-T-	L-T-P: 3-0-0 Credits:3 Contact Hrs: 3 hrs/w		veek		
ISA	Marks : 50	ESA Marks: 50	Total Marks: 100		
Теа	Feaching Hrs: 40 Exam Duration: 3 Hrs				
	-	Unit I			
	Conduction in semico	nductors: Atomic theory: The	atom, electron orbits		
	and energy levels, energy	rgy bands,			
	Conduction in solids: E	lectron motion and hole transfe	r, conventional current		
	and electron flow				
	Conductors, semicond	uctors and insulators: Bonding	force between atoms,		
1	Energy bands in differe	nt materials.		05 hrs	
-	n-type and p-type	Semiconductors: Doping, n-T	ype material, p-Type		
	material, Majority and	minority charge carriers, Effe	ects of heat and light,		
	charge carrier density.				
	Semiconductor conductivity: Drift current, diffusion current, charge carrier				
	velocity, conductivity, Hall Effect.				
	(Text 1 Page No 1-33)				
	-	ctions: Junction of p-Type and r	n-Type, Barrier voltage,		
		itative theory of p-n Junction			
	-	rse biased junction, forward bi	ased junction, junction		
	temperature effects.				
	Junction currents and voltages: Shockley equation, junction currents,				
	junction voltages.				
	p-n Junction Diode characteristics and parameters: Forward and reverse				
	characteristics, diode parameters.				
2	Diode approximations: Ideal diode and practical diodes, piecewise linear characteristics, DC equivalent circuits.				
2					
	DC load line analysis: DC load line, Q-Point, calculating load resistance and supply voltage.				
	Temperature Effects: Diode power dissipation, forward voltage drop,				
	dynamic resistance.				
	Diode AC models: Junction capacitance, AC-equivalent circuits (Reverse				
	biased and forward biased), reverse recovery time.				
		Diode data sheets, low power di	odes, rectifier diodes		
	Diode testing: Ohmr	neter tests, use of digital r	meter, plotting diode		
	characteristics.				

	Zener diodes: Junction break down, circuit symbols and packages,	
	characteristics and parameters, data sheet, equivalent circuits.	
	(Text 1 Page No 34-71)	
	Unit II	
	Electrostatics: Review on vectors: Coordinate Systems, Vector and Scalar	
	Quantities, Properties of Vectors, Components of a Vector and Unit Vectors	
	(Text 2 Page No 59-77)	
	Electric Fields: Properties of Electric Charges, Charging Objects by Induction,	
	Coulomb's Law, Analysis Model: Particle in a Field (Electric), Electric Field of	
	a Continuous Charge Distribution, Electric Field Lines Motion of a Charged	
	Particle in a Uniform Electric Field	
	Gauss's Law: Electric Flux, Gauss's Law, Application of Gauss's Law to Various	
	Charge Distributions, Conductors in Electrostatic Equilibrium	
3	Electric Potential: Electric Potential and Potential Difference, Potential	15 Hrs
	Difference in a Uniform Electric Field, Electric Potential and Potential Energy	
	Due to Point Charges, Obtaining the Value of the Electric Field from the	
	Electric Potential, Electric Potential Due to Continuous Charge Distributions	
	Electric Potential Due to a Charged Conductor, Applications of Electrostatics	
	Capacitance and Dielectrics: Definition of Capacitance, Calculating	
	Capacitance, Combinations of Capacitors, Energy Stored in a Charged	
	Capacitor, Capacitors with Dielectrics, Electric Dipole in an Electric Field, An	
	Atomic Description of Dielectrics	
	(Text 2 Page No 690-807)	
	Unit – III	
	Electromagnetics: Magnetic Fields: Analysis Model: Particle in a Field	
	(Magnetic), Motion of a Charged Particle in a Uniform Magnetic Field,	
	Applications Involving Charged Particles Moving in a Magnetic Field,	
	Magnetic Force Acting on a Current-Carrying Conductor, Torque on a Current	
	Loop in a Uniform Magnetic Field,	
4	Sources of the Magnetic Field: The Biot–Savart Law, The Magnetic Force	10 Hrs
4		
4	Between Two Parallel Conductors, Ampere's Law, The Magnetic Field of a	
4		
4	Between Two Parallel Conductors, Ampere's Law, The Magnetic Field of a	
4	Between Two Parallel Conductors, Ampere's Law, The Magnetic Field of a Solenoid, Gauss's Law in Magnetism, Magnetism in Matter	
4	Between Two Parallel Conductors, Ampere's Law, The Magnetic Field of a Solenoid, Gauss's Law in Magnetism, Magnetism in Matter Faraday's Law: Faraday's Law of Induction, Motional emf, Lenz's Law, Induced	
	Between Two Parallel Conductors, Ampere's Law, The Magnetic Field of a Solenoid, Gauss's Law in Magnetism, Magnetism in Matter Faraday's Law: Faraday's Law of Induction, Motional emf, Lenz's Law, Induced emf and Electric Fields Generators and Motors, Eddy Currents	

2. Serway and Jewett, "Physics for Scientists and Engineers-with Modern Physics", 9th Edition, CENGAGE learning. 2014

References:

- 1. Jacob Millman and Christos Halkias, "Electronic Devices and Circuits" TMH
- 2. R P Feynman, Robert B Leighton, Matthew Sands, The Feynman Lectures on Physics Vol-II, Norosa Publishing House (1998).
- 3. Ben G Streetman, Solid State Electronic Devices, Prentice Hall, 1995

BACK

Program: Bachelor of Engineering			Semester - I		
Course Title: Engineering Mechanics		Course Code: 15ECVF1	101		
L-T-P: 4-0-0 Credits:4 Contact Hrs: 4hrs/wee		eek			
ISA Marks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100			
Teach	Teaching Hrs: 50 Exam Duration: 3 hours			s	
		Unit I			
	Overview of Civil Er	ngineering: Evolution of Civil Engi	neering: Specialization,		
	scope and role.				
1	Impact of Civil Engi	neering on: National economy, en	vironment and social &	04 hrs	
-	cultural fabric.				
	Challenges and Op	portunities for Civil Engineers: Civ	vil Engineering Marvels,		
	-	ligher education and Research.			
	-	nt force system: Introduction to E			
		Particle, Continuum, Body, Rigid b			
		and its elements; Laws of Mechan	-		
		of transmissibility, Law of Superpos	sition, Newton's laws of		
	motion. Classificatio	-	6	12 hrs	
2	Resultant of coplanar concurrent force system: Definitions – Resultant,				
	composition & Resolution of a force, Equilibrium, Equilibrant, Formulae for				
	resultant of forces and resolution of a force. Numerical problems on				
	resultant of forces.				
	Equilibrium of coplanar concurrent force system: Conditions of equilibrium, Action & Reaction, Free body diagram, Lamis' theorem.				
		s on equilibrium of forces.	am, Lamis theorem.		
	· · · · · · · · · · · · · · · · · · ·	urrent force system : Resulta	nt of a force system:		
		-	-		
	Moment, moment of a force, couple, moment of a couple, Characteristics of couple, Equivalent force-couple system, Numerical problems on moment of				
3					
•	moments, Resultant of coplanar- non-concurrent force systems and			05 hrs	
	numerical problems.				
		Unit II			
	•	ce system (Chapter 3 contd) : Co			
4	types of support and loading for a statically determinate beam, Reactions at				
•	support connections, Numerical problems on equilibrium of force systems				
		ns for a statically determinate bea			
		oduction, types of friction, defir			
		n, laws of Coulomb friction, angle	-		
5	-	tion. Wedge and belt friction the		8 hrs	
		umerical problems on, impending			
	and inclined planes (including connected bodies); wedge friction; Ladder				
	friction and Belt fric	tion.			

KLE Technological University Creating Value, Leveraging Knowledge

		1
6	Simple Stress and Strain: Introduction, Properties of Materials, Stress, Strain, Elasticity, Elastic limit, Hooke's law & Young's modulus, Stress – Strain Diagram for structural steel, working stress and Factor of safety. Deformation of a bar due to force acting on it. Law of super position. Stresses in bars of uniform & varying cross sections. Composite sections. Problems connected to above topics.	6 hrs
	Unit – III	
7	Centroid of Plane Figures: Introduction, Definition, Methods of determining the centroid, axis of reference, axis of symmetry, Locating the centroid of simple plane figures (triangle, semicircle, quarter of a circle and sector of a circle etc,.) using method of integration, Numerical problems on Centroid of simple built up sections.	5 hrs
8	Second moment of area (Plane figures): Introduction, Definition, Method of determining the second moment of area, Section Modulus, Radius of gyration, perpendicular and Parallel axis theorems, Polar second moment of area, second moment of area of simple plane figures (triangle, rectangle, semicircle, circle etc,.) using method of integration, Numerical problems on MI of simple built up sections.	5 hrs
Text	Book:	
1	Beer, F.P. and Johnston, R., Mechanics for Engineers: Statics, McGraw Hill Co	mpany,
2	New York, 1988. Bhavikatti, S.S., and Rajasshekarappa K.G., Engineering Mechanics, 3Ed., Ne International Pub. Pvt. Ltd., New Delhi, 2008.	ew Age
3	 Kumar, K.L., Engineering Mechanics, 3ed., Tata McGraw Hill Publishing Compar Delhi, 2003. 	ny, New
4	Punmia, B.C., Jain, A. and Jain, A., Mechanics of Materials, Lakshmi Publication Delhi, 2006	ns, New
Refe	ences:	
1	Jagadeesh, T.R. and Jayaram, <i>Elements of Civil Engineering</i> , Sapna Book House Bangalore, 2006.	2,
2	. Ramamrutham, S., <i>Engineering Mechanics</i> , Dhanpat Rai Publishing Co., New D 1998.	Delhi,
3	Singer, F.L., Engineering Mechanics, 3 rd edition Harper Collins, 1994.	
4	 Timoshenko, S.P. and Young, D.H., <i>Engineering Mechanics</i>, 4th edition, McGi Publishing Company, New Delhi, 1956. 	raw Hill
5	 Irving H Shames, Engineering Mechanics, 3rd edition, Prentice-Hall of India P New Delhi- 110 001, 1995. 	Pvt. Ltd,

BACK

KLE Technological University Creating Value, Leveraging Knowledge

Prog	gram: Bachelor of Engin	eering	Semester - I		
Cou	rse Title: C Programmin	g for Problem Solving	Course Code: 18EC	SP101	
L-T-I	P: 0-0-3	Credits: 3	Contact hrs: 6 Hrs	/week	
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100		
Теас	ching :	Tutorial/Practical: 84hrs	Exam Duration: 3	Hrs	
1	Introduction to Proble	em Solving: Introduction to algori	thms / flowcharts	3 hrs	
	and its notations, top o	lown design, elementary problems			
2	Basics of C programmi	ng language: Characteristics and u	ses of C, Structure	15 hrs	
	of C program, C To	kens: Keywords, Identifiers, Var	iables, Constants,		
	Operators, Data-types,	Input and Output statements.			
3		atements: Conditional branchin	-		
		ment, else if ladder, switch statem	ent, unconditional		
	branching statements:				
	Introduction to Debugg			12 hrs	
	Introduction to Test Dr				
4		while, do while, for, nested statem		10 hrs 10 hrs	
5					
		ameters to functions, introduction	to macros.		
	Introduction to Coding Standards Arrays and Strings: Introduction, Declaration, Accessing elements, Storing 15 hr				
6					
		ations on one dimensional array, (operations on two		
	dimensional arrays,	ptimization and refactoring			
7		n, declaring pointer, pointer	variables pointer	08 hrs	
/		etic, passing arguments to function	•	UO IIIS	
	-	ssing an array to a function.	ins using pointers,		
8			o functions Array	05 hrs	
U	Structures and Unions:Introduction, passing structures to functions, Array 05 hr of structures, Unions				
Text	t Books				
		Solve it by Computer, 1ed, PHI, 20	08.		
2. Yashvant Kanetkar, Let us C ,15 th ed, BPS Publication, 2016.					
	erence Books:	,, <u>.</u>			
1.		tchie, The Programming language (C, 2ed, PHI, 2004.		
2.	B S Gottfried, Programming with C, 2ed, TMH, 2006.				
3.		perg, A Structured Program Approa	ch Using C, 3ed, CEN	NGAGE	
	Learning, 2008.				

Progra	Program: Bachelor of Engineering Semester - I				
Course	Course Title: Basic Electrical Engineering Course Code: 18EE			EF101	
L-T-P:	-P: 3-0-0 Credits: 3 Contact: 3hrs/week			ek	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing : 40 Hrs		Exam Duration: 3	Hrs	
		Unit-I	•		
1	Overview of Electrical Engineering: Specialization, scope & role, impact of Electrical Engineering on national economy, environment, Sources of generation, sustainability, challenges and opportunities for electrical engineers, electrical engineering marvels, future challenges.				
2	laws, loop and nod	e and current sources, Kirchoff's cual analysis of simple circuits with defirst-order RL and RC circuits.	-	05 hrs	
3	AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase series and parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star and delta connections. power measurement using two watt meters				
	Star and delta com	Unit-II			
4	classification of El separately excited, motors, three pha	ectric motors, DC motors-shunt, s ectric motors, DC motors-shunt, s PMDC motors – Speed Control, Step se induction motor, Characteristics for various applications.	eries, compound, oper Motors, BLDC	9 hrs	
5	Power Electronics (Text1, chapter 45): Introductory, Thyristor, Some thyristor circuits, Limitations to thyristor operation, The thyristor in practice. The fully controlled AC/DC converter. AC/DC inversion.			6 hrs	
	Electrical Wiring				
6	of wires and cable Types of wiring,	Safety and protection(Ref :Text3-pa s for internal wiring, Types of swit Safety precautions and rules in h s shock, first aid for electrical shoc	aches and Circuits, nandling electrical	05 hrs	

	grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and			
	Relays, Lockout and Tagout, Electrical Codes and Standards.			
	Batteries: Basics of lead acid batteries, Lithium Ion Battery, Battery			
7	storage capacity, Coulomb efficiency, Numerical of high and low charging	05 hrs		
	rates, Battery sizing. Numericals.			
Text Books				
1. Hughes, Electrical & Electronic Technology, 8th , Pearson Education, 2001				
2.	2. P C Sen, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Publications			
r	Cillest M Mestern, Densuchle and officient Electrical Device systems, Dublished by			

- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition
- 4. Frank D. Petruzella, Electric Motors and Control Systems, McGraw Hill Education Private Limited 2009 Edition

Reference Books:

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005
- 3. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

BACK

Program: Bachelor of Engineering Semester					Semester - I	
Cour	Course Title: Design Thinking for Social Innovation				Course Code: 20EHSP101	
L-T-P	: 0-1-1	L	Credits:	2	Contact Hrs: 4hrs/week	
ISA N	Aarks:	80	ESA Ma	rks: 20	Total Marks: 100	
Teac	hing H	rs:	Tutorial	/Practical: 56 hrs	Exam Duration: 3 hrs	
Mo	dule	Topics		Assignments	Support activities / Tools	
KNOWLEDGE, TOOLS & DEVELOPMENT	Course sensitization	 Introduction to Innovation: Awakening soc consciousness (www.yoursto) Social Innovati Leadership Engineering& innovation (EP (Connecting S Course to Min Project, Capst Project, Capst Project, Capst Project, Capst Course Overvi Students' Self Introduction A Group formati Activity 	cial ory.com ion and Social ICS) I i one us ew	 Reading assignments Read the handout of "The Process of Social Innovation" & Geoff Mulgan Design thinking for Social Innovation Written Assignments Writing about Akshaya Patra in class. (Background information about Akshaya patra and the Social Cuase it is addressing) Brainstorming Session on Social Innovators in Class 	by to Innovation Discussion on the behavioural blocks. Introducing oneself with three Adjectives- Appreciating diversity and discovering self • Group Formation Activity (Forming square) (Making four equilateral triangles out of popsicle sticks to enhance group cohesiveness amongst the group mates)	
	Create Mindsets	Seven Mindsets: 1. Empathy (Example of The E the Puppies) 2. Optimism	oy and	 Reading assignments Handout on " Creat Mindsets" 	 (How to train the Dragon? Common Video for all the mindsets) 	

	(Person Paralyzed waist down / Glass Halh full Half Empty) 3. Iteration (Thomas Alva Edison) 4. Creative Confidence (Origamy – Josef Albers) 5. Making it 6. Embracing Ambiguity (Confusion is the Welcome doormat at the door of Creativity) 7. Learning from Failure (Designing Website first and then asking the stakeholders about the website) (Spending one lakh for the business which is never launched)		•	Watching in Class TED Talk on "How to build youir Creative Confidence by David Kelley – IDEO Founder)
Process of Social Innovation	Engage Community study and Issue Identification	 Reading assignments Handout on Community Study and Issue Identification Case Study on "EGramSeva" Case Study on "Janani Agri Serve" Class Presentations Initial observations being made by the group (Literature Survey of Places of Hubli- Dharwad) www.readwhere.co m 	•	Activity on Observation skills To know how to use one's observation skills in understanding the social conditions Experience sharing by senior students Brainstorming Deliberations on the initial observations and arrive at the "Social Issue" Familiarization of the respective

r			r –			
			•	Detailed interaction /		templates with
				engagements with		the help of
				the society and		sample case
				finalize the social		study
				issue for intervention		
				e template 1: Frame		
			γοι	ır Design Challenge		
			Γ_	PEER REVIEW	[
	2.	Inspiration	<u>Rea</u>	ading assignments	•	Familiarization of
	•	Plan for the Research	•	Handout on		the respective
	•	Development of		Overview of		templates with
		Interview guide		Inspiration		the help of
	٠	Capture your	<u>Cla</u>	ss Presentations		sample case
		Learnings	•	Entirety of the Social		study
				lssue		
			•	Identification of the		
				Stake Holders		
				(Examples on		
				Fluoroscent Curtain		
				and Students'		
				Punctuality for Class)		
			•	Interview Questions		
				(Role Play on		
				Interview with		
				Stakeholders)		
			•	Category wise		
				Learnings capture		
			Use	e template 2: Plan		
			your Research			
			Ten	nplate 3.		
			Dev	velopment of		
			Inte	erview Guide		
			Ten	nplate 4. Capture		
			γοι	ır Learning		
	_					
	3.	Ideation	Rea	ading assignments	٠	Familiarization of
		3.1 Synthesis	•	Handout on		the respective
	•	Search for meaning		Overview of Ideation-		templates with
				Synthesis		
	 -		-			

•	Create "How might	Cla	ass Presentations		the help of
	we" question	•	Create insights		sample case study
	- 1	•	"How might we"		. ,
			questions		
		Us	e template 5: Create		
		Ins	sights		
		Те	mplate 6: Create		
		"Н	ow Might We'		
		Qı	lestions		
3.0	Ideation	<u>Re</u>	ading assignments	•	Brain storming
	3.2 Prototyping	•	Handout on	•	Familiarization of
			Overview of Ideation-		the respective
•	Generate Ideas		Prototyping		templates with
•	Select Promising	Cla	ass Presentations		the help of
	Ideas	•	Story board-		sample case
•	Determine what to		demonstrating the		study
	prototype		possible solutions	•	Activity on Risk
•	Make your prototype	Us	e template 7: Select		management
•	Test and get feedback	yo	ur best ideas	•	Activity on
		Те	mplate 8 : Determine		Resource
		wl	nat to prototype		management
					Structure building
					games
		I	PEER REVIEW		
4.0	Implementation	<u>Re</u>	ading assignments	•	Familiarization of
•	Create an action plan	•	Handout on		the respective
•	Community Partners		Overview of		templates with
	(if any)		Implementation		the help of
•	Budgeting &	<u>Cla</u>	ass Presentations		sample case
	Fundraising	•	Pilot implementation		study
	Peer to Peer		plan with required		
2.	0		resources and Budget		
3.	0		indicating stake		
4.			holders & their		
5.			engagement		
6.					
	Walkathons				

 7. Conducting Yoga Classes (www.causevox.com / www.blog.fundly.com) Duration Ethical concerns Launch your solution Feedback (Impact) 		
5.0 Reflect Reflection of the overall learning by the students	Reading assignments• Handout on Overview of students ReflectionUse template 9: Reflection on the ProcessClass Presentations Final Presentation- After Implementation	 Familiarization of the respective templates with the help of sample case study

<u>BACK</u>

Progran	n: Bachelor of Engin	Semester - I			
Course	Title: Applied Physic	Course Code: 21EPHP102			
L-T-P: 0-	-0-1	Credits : 1	Contact Hrs.: 02 Hrs/Week		
ISA Mar	rks: 80	ESA Marks: 20	Total Marks: 100		
Teachin	g Hrs:	Tutorial/Practical: 28hrs	Examination Duration: 3 Hrs.		
		Experiments			
1.	Four probe method	k			
2.	V-I characteristics of p-n junction diode				
3.	Zener diode characteristics				
4.	Hysteresis loss				
5.	Transistor characteristics				
6.	Measurement of dielectric constant				
7.	Resonance frequency of LCR circuits				
8.	Study of frequency response of passive components				
9.	Calibration of thermocouple				
10.	Calibration of electrical meters				

<u>BACK</u>

II Semester

Pro	gram: Bachelor of Engine	ering	Semester - II				
	Course Title: Multivariable calculus Course Code: 18EMAB10						
L-T-P: 4-1-0 Credits: 05			Contact Hours: 6hrs/week				
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	0			
Теа	ching Hours: 50	Tutorial/Practical: 28hrs	Examination Duration: 3	on: 3hrs			
		Unit-I					
	Partial differentiation: F	unction of several variables,	Partial derivatives, Level				
1	curves, Chain rule, Erro	ors and Approximations. E	xtreme value problems.	12 hrs			
	Lagrange's multipliers.						
	Double integrals: Dou	ıble integrals- Rectangular	and polar coordinates,				
2	Change the order of inte	gration. Change of variables	, Jacobian. Application of	00 has			
2	double integrals			08 hrs			
	Matlab: optimization pro	blems, application of doubl	e integrals				
		Unit-II					
_	Triple integrals: Triple in	tegrals, Cartesian, change to	Cylindrical and Spherical				
3	coordinates Application of	of Triple integrals		07 hrs			
	Calculus of Vector Fields	: Vector fields, Gradient an	d directional derivatives.				
		als. Independence of path					
4	Green's theorem, Divergence of vector field, Divergence theorem, Curl of						
	vector field. Stokes theorem.						
	Matlab: application of Triple integrals, Vector calculus problems						
		Unit III					
	Differential equations of	f higher orders:					
	(a) Linear differential equations of second and higher order with constant						
	coefficients The method of Variation of parameters. Initial and boundary value						
5	problems.						
Э	(b) Applications of second order differential equations-Newton's 2 nd law,						
	electrical circuits, Simple Harmonic motion. Series solution of differential						
	equations. Validity of Series solution of Differential equations.						
	Matlab: application of differential equations						
Text Books :							
1. Early Transcendental Calculus- James Stewart, Thomson Books, 7ed 2010							
Reference Books:							
1. Hughues- Hallett Gleason, Calculus Single and Multivariable, 4ed, Wiley India,				a,			
	2009.						
	2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010						

BACK

Program: Bachelor of Engineering Semester - II						
Course Title: Engineering Chemistry			Course Code: 15ECHB102			
L-T-	-P: 3-0-0	Credits: 03	Contact Hours: 3hrs/week			
ISA Marks: 50		ESA Marks: 50 Total Marks: 100				
Теа	Teaching Hours: 40 Examination Duration:			3hrs		
		Unit-I				
1	Chemical Bonding: Introduction, Ionic bond, factors influencing the formation of Ionic bond: Ionization energy. Electron affinity & electro negativity and properties of Ionic compounds. Covalent bond: Valence Bond theory & Molecular Orbital theory – formation of hydrogen molecule, factors influencing the formation of covalent bond, polar and non-polar covalent bond, dipole moment, problems on calculation of percentage of Ionic character and properties of covalent compounds, Co-ordinate bond:					
2	formation of hydronium ion and ammonium ion. Electrochemical Energy Systems: Electrode potential, Nernst equation, formation of a cell; Reference electrodes – Calomel electrode, Determination of electrode potential, numerical problems on E, $E_{cell} \& E^{0}_{cell}$. Batteries: Classification, Characteristics, Lead - acid, Lithium ion battery. Fuel cells - Methonol-O ₂ fuel cell.					
3	 Polymers: Introduction, polymerization; mechanism of polymerization taking ethylene as an example. Determination of molecular weight of a polymer – numerical problems. Commercial polymers - Plexi glass, PS, polyurethane. Polymer composites: Carbon fiber and Epoxy resin – synthesis, properties and applications. Introduction to conducting polymers, mechanism of conduction in poly acetylene and applications. 					
Unit-II						
4	Plating Techniques: Introduction, technological importance. Electroplating, Principles of electroplating. Factors affecting nature of electrodeposit, throwing power, Numerical problems on throwing power, Electroplating04process of gold by acid cyanide bath. Electro less plating, advantages of electro less plating over electroplating. Electro less plating of Cu and its application in the manufacture of PCB.04					
5	Purification of silicon;	troduction, physical and chem chemical vapor deposition (CVI h; preparation of single crysta	D) process, zone refining	09 hrs		

	crystal pulling technique – numerical problems. Crystal slicing and wafer preparation.			
	Fabrication process: thermal oxidation, diffusion, ion implantation –			
	numerical problems, epitaxial growth, masking and photolithography, wet			
	etching, dry etching.			
	Material Chemistry: Liquid Crystals – Types of liquid crystals, applications of			
6	Liquid Crystal in Display system.	03 hrs		
U	Fluorescence and Phosphorescence – Jablonski diagram, Thermoelectric and	05 1115		
	Piezoelectric materials – meaning, properties and applications			
	Unit-III			
	Instrumental methods of measurement: Advantages over conventional			
	methods. Electro analytical methods: Potentiometer - principle, methodology			
7	and applications. Optoanalytical methods: Colorimeter - Principle,	04 hrs		
7	methodology and applications.	04 nrs		
	Spectral methods of analysis : UV – Spectrophotometer - Instrumentation			
	and applications			
	Environmental Chemistry: Water: Sources and ill effects of water pollutants			
	- fluoride and nitrate; determination of total hardness of water by EDTA			
8	method – numerical problems. ,	04 hrs		
ð	Sewage: Determination of Biological Oxygen Demand by Winkler's method	04 nrs		
	- numerical problems and determination of Chemical Oxygen Demand -			
	numerical problems.			
Тех	t Books :			
1.	1. A text Book of Engineering Chemistry, 1st edition, Dara. S. S, S. Chand & Co. Ltd., 2009,			
	New Delhi.			
2. A text Book of Engineering Chemistry, 16th edition, Jain P.C and Jain M, Dhanpat				
	Publications, 2006, New Delhi			

Reference Books:

- 1. Text book of Inorganic Chemistry, P.L.Soni, Sultan Chand, 1999, New Delhi.
- 2. Hand book of batteries, David Linden, Thomas B Reddy, 3rd edition Mc Graw Hill publications, 2001, New York.
- 3. Polymer Science, 6th Edition, Gowariker V.R., Viswanathan N.V., Sreedhar J., New Age International (P) Ltd, 2007, New Delhi.
- 4. Solid State Devices& Technology, 4thEdition, V.Suresh Babu, sanguine Technical Publishers, 2005, Bangalore.
- 5. Material Science & Engineering: An Introduction, 9th Edition, Calister William D, John Wiley and sons, 2007, New York.
- 6. Instrumental methods of Chemical nalysis, 5th Edition, Gurudeep R Chatwal, Shan K Anand, Himalaya Publishing House Pvt. Ltd, 2010, Mumbai.
- 7. VLSI Technology, 2nd Edition, S.M.Sze, McGraw Hill Series in electrical and computer engineering, 1998, New York.

Prog	gram: Bachelor of Engine	eering	Semester - II	
Cou	Course Title: Problem Solving with Data Structures Course Code: 18ECS			SP102
L-T-I	P: 0-0-3	Credits: 3	Contact: 6 hrs/week	
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100	
Теас	ching hrs :	Tutorial/Practical: 84hrs	Exam Duration: 3 H	lrs
	Pointers, Structures and Files: Recap of basics: Pointers ,Structures; Se			
1	referential structures manipulation programs	, dynamic memory managem s	nent Files – File	12 hrs
	Stacks and Recursi	on: Stack: Definition, Operat	tions, Stack ADT	
2	Implementation of stat	ck operations. Applications of stac	k.	16 hrs
	Recursion- Need for Re	cursion and problems on Recursic	on.	
	Queues: Definitions of	of Linear, Circular queues, Queu	e ADT Linear and	
3	circular queue operation	ons Definition and working of Price	ority queue, Double	16 hrs
	ended queue; Applications of queues.			
	Lists : Concept of lists	and dynamic memory managem	ent lists, definitions	
4	and representations: si	ngly, doubly, circular lists. Dynamic	Implementation of	18 hrs
	lists and its operations,	, Applications of linked lists		
	Binary trees: Binary Tr	ee: Definition, Terminology and r	epresentation, Tree	
5	Traversals both recu	rsive and iterative. Binary Sea	arch Tree and its	16 hrs
	applications.			
Text	t Books			
	1. Data Structures with	C Seymour Lipschutz, Schaum's	Outline Series	
	2. Data Structures Using C and C++ Langsam and Tanenbaum, PHI Publication			on
3. Data Structures Through C Yashavant P Kanetkar, BPB Publication				
Reference Books:				
	1. Data Structures, Algorithms and Applications In C++ Satraj Sahani			
	2. Data Structures and	Algorithms Made Easy – Narshima	n Karumunchi, Caree	r Monk

<u>BACK</u>

Progra	Program: Bachelor of Engineering Semester - II			
Course	Course Title: Engineering Exploration Course Code: 15		Course Code: 15E	CRP101
L-T-P:	0-0-3	Credits: 3	Contact Hrs.: 6hrs	/week
ISA M	arks: 80	ESA Marks: 20	Total Marks: 100	
Teachi	ing Hrs:	Tutorial/Practical: 84hrs	ESA Exam Duratio	n: 3 hrs
No		Content		Sessions
1	Introduction to Eng	ineering and Engineering Study	/	1
2	Role of Analysis in Engineering, Analysis Methodology			2
3	Data Analysis Graphing		2	
4	Basics of Engineering Design, Multidisciplinary Nature of Engineering			5
4	Design			5
5	Project Managemer	nt		1
6	Sustainability in Eng	gineering		2
7	Ethics			1
8	Modeling, Simulation and Data Acquisition using Software Tool			1
9	Platform based development : Arduino			3
9	Course Project			3
Refere	ence Books:			

1. Engineering Fundamentals & Problem Solving by Arvid Eide, Roland Jenison, Larry Northup, Steven, Mc GrawHill Higher Education, 6th Edition (2011)

2. Engineering Exploration (Edited Book, 2008) by Pearson Publication

Evaluation Scheme

Chapter		Weightage in
No	Name	percentage
1	Introduction to Engineering and Engineering Study	-
2	Role of Analysis in Engineering	
3	Analysis Methodology	10
4	Data Analysis Graphing	10
5	Basics of Engineering Design	
J	Multidisciplinary Nature of Engineering Design	20
6	Project Management	5
7	Sustainability in Engineering	10
8	Ethics	5
9	Modelling, Simulation and Data Acquisition using Software	
9	ТооІ	-
10	Platform Based Development: Arduino	-
10	Course Project	40

<u>BACK</u>

Prog	ram: Bachelor of Engin	eering	Semester - II	
Cour	se Title: Basic Electroni	cs	Course Code: 18EECF10	1
L-T-P	L-T-P: 4-0-0 Credits: 4 Contact Hours: 4 Hrs/w		Contact Hours: 4 Hrs/w	eek
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teach	hing Hrs: 50		Examination Duration:	3 Hrs.
		Unit-I	·	
	Trends in Electronic I	ndustries: Introduction, Road	map of electronic	
	sector, scope and opp	ortunities in various segmen	ts of electronics (i.e.,	
1	Consumer, Telecom, l	T, Defense, Industrial, Medica	l and Automobiles),	03hrs
	Government and priv	ate sectors, Growth profile of	Electronic industries,	
	Standards and PoliISA	s, Electronic System Compon	ents.	
	Basic Components, D	evices and Applications: Dio	de: PN junction	
	characteristics; mode	ling as a circuit element, idea	l and practical diode. AC	
2	to DC converter: Half	wave and full wave rectifier (centre tap and bridge),	10 hrs
2	capacitor filter and its	analysis, numerical example	s. Zener diode and its	10 1115
	applications (Voltage	reference and voltage regulat	tor). Realization of	
	simple logic gates like	AND and OR gates.		
	Transistor: BJT, transis	stor voltages and currents, Si	gnal amplifier (Fixed	
	bias, Collector base bi	ias, Voltage divider bias, CE c	onfiguration). DC load	
3	line. Voltage, current and power gains. Transistor as a switch: NOT Gate,			
	Basic (DTL) NAND gate. Transistor as a Small Signal Amplifier (Single Stage			
	and Two Stage RC-cou	ıpled Amplifier).		
		Unit-II		
	Digital Logic: Number	systems: Decimal, Binary, Oc	tal and Hexadecimal	
	•	versions, Binary Operations-A		
		ems. Logic gates: Realization		
	-	gates (AND, OR, NOT), Realiza	-	
4		oolean algebra: Theorems ar	•	14 hrs
	_	s, simplification of logical ex	· –	
	-	h Maps to Minimize Boolean		
		and 4 Variables), Design of H	lalf Adder and Full	
	Adder, Parallel Adder	5		
		r: OPAMP characteristics (ide	• •	
5		ations: Inverting amplifier, No		06 hrs
		gration, Differentiation, Adde	r, Subtractor, ZCD and	
Comparator.				
		Unit-III		
6		ems: Basic block diagram of c		07 hrs
	types of modulation.	Amplitude modulation: Time	-Domain description,	

Frequency-Domain description. Generation of AM wave: square law	
modulator. Detection of AM waves: envelope detector. Double side band	
suppressed carrier modulation (DSBSC), Generation of DSBSC wave :	
balanced modulator, Super heterodyne principle.	

Linear Power Supply, UPS & CRO: Working principle of linear power

7 supply, UPS and CRO. Measurement of amplitude, frequency and phase of a given signal.03 hrs

Text Book:

- 1. David A Bell, Electronic devices and Circuits, PHI New Delhi, 2004
- 2. K.A Krishnamurthy and M.R.Raghuveer, Electrical, Electronics and Computer Engineering for SISAntist and Engineers, 2, New Age International Publishers, 2001

3.A.P. Malvino, Electronic Principles, Tata McGraw Hill, 1999

References:

- 1. George Kennedy, Electronic Communication Systems, Tata McGraw Hill, 2000
- Morris Mano, Digital logic and Computer design , 21st Indian print Prentice Hall India, 2000
- 3. Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4. Boylestead Nashelsky, Electronic devices & Circuit theory, Prentice Hall India, 2000

5. RamakantGaikawad, Operational Amplifiers & applications, PHI, 2000

Program:	Bachelor of Engi	neering		Semester - II	
Course Ti	tle: Basic Mechar	nical Engineering		Course code: 15EMEF101	
L-T-P: 2-1	-0	Credits: 3		Contact Hrs: 4hrs/week	
ISA Marks	s: 50	ESA Marks: 50		Total Marks: 100 Exam Duration: 3 hrs	
Teaching	Hrs: 50	Tutorial/Practical: 2	8hrs		
Chapter	Co	ontents	Hours	Tutorial	Sessions
		UNIT I			
1	Introduction to	Mechanical	2	Visit to Workshop	1
	Engineering:			and Machine Shop,	
	Definition of en	gineering,		Tools, Safety	
	Mechanical Eng	ineering, Branches		Precautions	
	of Mechanical E	ingineering, Who		Video presentations	
	are Mechanical	Engineers?,			
	Mechanical Eng	ineers' top ten			
	achievements.				
2	Manufacturing Engineering: Basics		8	Demonstration on	5
	of Manufacturing			working of Lathe,	
	What is manufacturing?, The main			milling, drilling,	
	manufacturing sectors, The			grinding machines	
	importance of t	he main		Demonstration on	
	manufacturing	sectors to the Indian		Welding (Electric	
	economy, Scales	s of production		Arc Welding, Gas	
	Classification of	manufacturing		Welding, Soldering)	
	Processes.			Demonstration and	
	Advances in Ma	nufacturing: CNC		Exercises on Sheet	
	machines, Mecl	natronics and		metal work.	
	applications			Visit to Learning	
				Factory	
		UNIT I			1
3	Design Enginee	ring: Power	6	Design Problems	5
	Transmission El	ements		like <u>a moving</u>	
	Overview			<u>experience</u> ,	
	Design Applicat	ion:		aluminium can	
	Belt Drives. T	ypes, Length of Belt.		crusher	
	Velocity Ratio	o, Initial Tension.		Video presentations	
	Ratio of Tens	ions. Power			
	Transmitted,	Numerical			
	Problems.				

-			1	
	Gears. Spur Gear, Rack and			
	Pinion, Worm Gear, Bevel Gear,			
	Helical Gears. Speed, Torque, and			
	Power in Gear pair. Simple and			
	Compound Gear trains.			
	Numerical Problems.			
	• Ball and Roller Bearings, Types,			
	Applications.			
4	Thermal Engineering 1: Prime	4	Case study on	1
	Movers.		power requirement	
	Internal Combustion Engines:		of a bike, car or any	
	Classification, IC engine parts, 2		machine	
	stroke SI and CI engine, 4 Stroke SI		Video presentations	
	and CI Engine, PV diagrams of Otto			
	and Diesel cycles, Comparison of 2			
	stroke and 4 stroke engine,			
	comparison of CI and SI engine,			
	Problems on Engine Performance,			
	Future trends in IC engines.			
	UNIT III			
5	Thermal Engineering 2: Thermal	5	Case study on	1
	Systems' Applications		selection of various	
	Refrigeration system, Air		thermal systems	
	conditioning system, Pumps,		Video presentations	
	Blowers and Compressors, Turbines,			
	and their working principle and			
	specifications.			
Toyt Dog		•	•	

Text Books:

- 1. Jonathan Wickert and Kemper Lewis, An Introduction to Mechanical Engineering, Third Edition, 2013- Cengage Learning.4
- 2. K.R. Gopalkrishna, Sudhir Gopalkrishna, S.C. Sharma. A Text Book of Elements of Mechanical Engineering, 30th Edition, Oct 2010,–Subhash Publishers, Bangalore.

Reference Books:

- 1. Course Material developed by the Department of Mechanical Engineering.
- 2. SKH Chowdhary, AKH Chowdhary, Nirjhar Roy, The Elements of Workshop Technology - Vol I & II, 11th edition 2001, Media Promoters and Publishers.
- 3. Basic Manufacturing, Roger Timings, Third edition, Newnes, An imprint of Elsevier

Program: Bachelor of Engineering		Semester - II		
Cours	Course Title: Professional Communication		Course Code: 15EHSH101	
L-T-P	: 1-1-0	Credits: 2	Contact Hrs.: 3hrs/week	
ISA N	Narks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 20	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs	
1	Basics- English Communication: Course Introduction, Explanation of template mix-ups with correct usages & necessity of grammar in error detection, Usage of tenses			9 hrs
2	Vocabulary and grammar: Vocabulary, Word Formation and Active and Passive Voice			6 hrs
3	Bouncing Practice: Definition and types of bouncing and its practice with examples, reading skills, free style speech. Individual presentation.			6 hrs
4	Rephrasing and Structures: Comprehension and Rephrasing, PNQ Paradigm and Structural practice			8 hrs
5	Dialogues: Introduction of dialogues, Situational Role plays,			3 hrs
6	6 Business Communication: Covering letter, formal letters, Construction of paragraphs on any given general topic.			9 hrs
References: 1. Collins Cobuild Advanced Learner's English Dictionary 2. Raymond Murphy - Intermediate English Grammar, Cambridge University Press 3.Martin Hewings- Advanced English Grammar, Cambridge University Press.			5	

Semester-III

Progr	am: Bachelor of Engineer	ring	Semester - III	
Cours	e Title: Graph Theory and	d Linear Algebra	Course Code: 15EMAB20)4
L-T-P:	-T-P: 4-0-0 Credits: 4 Contact Hrs: 4 hrs/week			
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teach	ning Hrs: 50		Exam Duration: 3hrs	
		Unit –I		
	Graph theory : Definitio	ons and examples of graph,	, Subgraphs, Components,	
1	Graph Isomorphism, Ve	rtex Degree, Euler Trails ar	nd Circuits, Planar Graphs,	10 hrs
	Hamilton Paths and Cyc	les, Graph Colouring and C	Chromatic Polynomials.	
	Trees : Definitions, Pro	perties, examples, Rootec	trees and Binary rooted	
2	trees, preorder and po	ost order traversals, sortir	ng, spanning trees, prefix	10 hrs
-	codes and weighted tre	ees, Optimization and Mat	tching- Dijkstra's shortest	10 111 5
	path algorithm, Minimu	m spanning trees, Kruskal	and prim's algorithms.	
	1	Unit –II		
	-	•	uction to system of linear	
	equations and its solutions, elementary row operations-echelon form, Rank			
			tion, solution of system of	
3			, Gauss Jordon method (ii)	
	Iterative methods- Guass-Seidal method. Eigen values and Eigen vectors of			12 hrs
	a matrix. Largest Eigen value and the corresponding Eigen vector by power			
	method, Application cas	-	plac Linear combinations	
	· · ·	·	ples, Linear combinations space of a matrix, Linear	
4		· •	dimensions, application to	08 hrs
-		-	, Coordinates, Application	00 111 3
	case study.		, coordinates, Application	
	case study.	Unit –III		
	Fourier Series: Complex	x Sinusoids, Fourier series	s representations of four	
	classes of signals, Period			
	- · ·		n of Complex Co-efficient	
	of Exponential	, ,	·	
	Fourier Series and Exam	ples. Convergence of Fou	rier Series. Amplitude and	
5	phase spectra			10 hrs
	of a periodic signal. P	roperties of Fourier Serie	es(with proof): Linearity,	
	Symmetry			
	Properties, Time shif	ft, Frequency Shift, Sc	aling, Time differential	
	differentiation coefficie	nts,		
	Time domain Convolution	on, Multiplication Theoren	n, Parseval's theorem and	

	Examples on		
	these properties.		
Text B	ooks		
1.	David C. Lay, Linear Algebra and its Applications, 3 rd Ed., Pearson Education, 2005.		
2.	Discrete Mathematics and its applications., Kenneth H Rosen, Mcgrawhill, 7ed, 2011		
3.	Discrete and Combinanatorial Mathematics by Ralph P.Grimaldi, Pearson		
	Education, Asia, Fourth edition-2002.		
4.	Grewal B. S., Higher Engineering Mathematics, 39th Ed., Tata McGRAW Hill, New		
	Delhi, 2005.		
Refere	ence Books:		
1.	Seymour Lipschutz and Marc Lipson, Linear Algebra, Schaums outline.		
2.	Theory and Problems of Combinatorics including concept of Graph Theory by V. K.		
	Balakrishnan (Schaum's outline series), Mcgraw Hill, 1995		
3.	Graph Theory with Applications to Engineering and Computer SISAnce by		
	NarsinghDeo, PHI publications (1986).		
4.	Simon Haykin, Barry Van Veen, Signals and Systems, John Wiley, 2002.		

Scheme for End Semester Assessmer	nt (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	Q.No1, Q.No2,	1, 2	Solve Any 2
	Q.No3		
II	Q.No4, Q.No5,	3, 4	Solve Any 2
	Q.No6		
	Q.No7	5	Solve Any 1
111	Q.No8	5	

BACK

Prog	gram: Bachelor of Engi	neering	Semester - III				
Cou	rse Title: Graph Theory	and Calculus	Course Code: 15EMA	3233			
L-T-I	P: 4-0-0	Credits: 04	Contact Hours: 4hrs/v	veek			
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100				
Теас	ching Hours: 50		Exam Duration: 3hrs				
		Unit I					
	Graph theory: Definit	ions and examples of graph, Su	bgraphs, Components,				
1	Graph Isomorphism, V	/ertex Degree, Euler Trails and (Circuits, Planar Graphs,	10 hrs			
	Hamilton Paths and Cy	ycles, Graph Colouring and Chro	omatic Polynomials.				
	Trees: Definitions, Pro	perties, examples, Rooted tree	s and Binary rooted				
trees, preorder and post order traversals, sorting, spanning trees, prefix							
-	codes and weighted trees, Optimization and Matching- Dijkstra's shortest						
	path algorithm, Minimum spanning trees, Kruskal and prim's algorithms						
		Unit II					
	Differential Calculus : Differentiation of standard functions of first and						
3							
functions for single variable.							
Partial differentiation: Function of several variables, Partial derivatives,				06 hrs			
-	Chain rule, Errors and	approximations					
	Integral Calculus: Eval	luation of integrals, properties,	Beta and Gamma				
5	functions, relation bet	tween Beta and Gamma function	ons Approximate	09 hrs			
		al rule, Simpson's 1/3 rule, Mu	Iltiple integrals, simple				
	problems.						
	1	Unit III					
	Differential equations	5					
	 Introduction, ord 	er and degree of equation, Solu	ition of first order first-				
	degree different	ial equations –variable separ	able methods, Linear	10 hrs			
6	differential equa	tions, Bernoulli's equations, I	nitial value problems,	10 1113			
	Runge -kutta met	thod for initial value problem					
	Differential equa	ations of second and higher	orders with constant				
	coefficients.						
Text	Books						
	1. Discrete Mathematic	cs and its applications., Kenneth	n H Rosen, Mcgrawhill,7e	ed,2011			
		nbinanatorial Mathematics b	y Ralph P.Grimaldi, I	Pearson			
	Education, Asia, Fo	urth edition-2002.					

- 3. Grewal B S, Higher Engineering Mathematics, 38ed, Khanna Publication, New Delhi, 2001
- 4. Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi,2003

Reference Books:

- 1. Early Transcendentals Calculus- James Stewart, Thomson Books, 5e 2007
- 2. Theory and Problems of Combinatorics including concept of Graph Theory by V. K.Balakrishnan (Schaum's outline series), Mcgraw Hill, 1995
- 3. Graph Theory with Applications to Engineering and Computer Science by Narsingh Deo, PHI publications (1986).

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
11	Q.No4, Q.No5, Q.No6	3,4, 5	Solve Any 2 out of 3
111	Q.No7, Q.No-8	6	Solve Any 1 out of 2

Scheme for End Semester Assessment (ESA)

Progra	am: Bachelor of Engineer	ing	Semester - III				
Cours	e Title: Discrete Mathem	atical Structures	Course Code: 19E	CSC202			
L-T-P:	3-1-0	Credits: 3	Contact Hrs: 5hrs/	/week			
ISA Marks: 50 ESA Marks: 50 Total Marks: 100							
Teaching Hrs: 40Exam Duration: 3				hrs			
		Unit –I					
	Logic and Proofs: Pr	opositional Logic, Propositic	nal Equivalences,				
1	Predicates and Quantifiers, Rules of Inference. Introduction to Proofs,						
	Logic programming : Pro	olog					
2	Functions and Relations	: Types of sets, Functions, Rela	ations, Equivalence	6 hrs			
	relations partial orderin	g (Poset), Hasse Diagram		0 1113			
		Unit –II					
	Counting: The Basic	s of Counting, The Pige	onhole Principle,				
3	Permutations and Combinations, Generating Permutations and						
	Combinations.						
	Recurrence Relations:	Introduction, Application	s of Recurrence				
4	Relations, Solving Recurrence Relations, Formulating Recurrence						
	relations, Generating Functions, Inclusion–Exclusion, Applications of						
	Inclusion–Exclusion						
	Γ	Unit –III					
5	Groups: Binary Operation	ons, Semi groups, Products and	Quotients of Semi	4 hrs			
5	Groups, Groups, Product and Quotients of Groups						
	Number Theory: Divis	ibility and Modular Arithme	etic , Primes and				
6	Greatest Common Di	visors, Solving Congruences	, Applications of	4 hrs			
	Congruences						
Text E	Books:						
		thematics and its Applicatior	s with Combinator	ics and			
		a Mc-GrawHill Publications, 2					
Refer	ence Books:	,					
1	Kolman, Bushy and Ross	Discrete Mathematical Struct	ures, 5Ed., PHL 2004	1			
		ina B.V, Discrete and Combi					
		d., Pearson Education, 2007					
	· · · · · · · · · · · · · · · · · · ·	. , -					

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	Solve Any 1
III	Q.No8	6	Solve Ally I

Tutorial Content:

SI.No	Торіс	Number of slots
1.	Logic and Proofs	2
2.	Logic Programming : Prolog	2
3.	Functions and Relations	2
4.	Counting	2
5.	Recurrence Relations	2
6.	Groups	1
7.	Number theory	1

Progra	am: Bachelor of Engineer	ing	Semester - III		
Course	e Title: Computer Organi	zation and Architecture	Course Code:		
L-T-P:			Contact Hrs: 5hr	s/week	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	0	
Teach	ing Hrs: 40		Exam Duration:	3 hrs	
		Unit –I			
Basic Concepts and Computer Evolution, Performance Issues, A Top-					
Ŧ	Level View of Computer	Function and Interconnectior	1	05 hrs	
2	Memory, Input/Output,	Computer Arithmetic, Digital	Logic	08 hrs	
3	Instruction Sets: Charac	teristics and Functions, Addre	ssing Modes and	07 hrs	
3	3 Formats				
Unit –II					
4	4 Processor Structure and Function, Reduced Instruction Set Computers				
E	Instruction-Level Parallelism and Superscalar Processors, Parallel				
2	5 Processing				
		Unit –III			
6	Multicore Computers, G	ieneral-Purpose Graphic Proce	essing Units	05 hrs	
7	Control Unit Operation,	, Microprogrammed Control,	Case studies and	05 hrs	
/	Projects			05 1115	
Text B	ooks:				
1.	William Stallings, Com	nputer Organization and Ar	chitecture Desigr	ing for	
	Performance, 10 th Ed, Pe	earson Education, 2016.			
Refere	ence Books:				
1.	John L. Hennessy and Da	avid A. Patterson, Computer A	rchitecture: A Quai	ntitative	
	Approach 5th Edition, E	lsevier publication, 2017.			
	0,	ed Computer Architecture	Parallelism Sc	alability	
	Programmability, Tata N	1cGraw Hill 2008			

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
Ш	Q.No4, Q.No5	4,5	Solve Any 2
111	Q.No6	6	Solve Any 1
	Q.No7	7	JOIVE AILY I

Progra	am: Bachelor of Engineer	ring	Semester - III			
Cours	e Title: Data Structures a	nd Algorithms	Course Code: 20ECSC2	05		
L-T-P:	4-0-0	Credits: 4	Contact Hrs: 4 hrs/we	ek		
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100			
Teach	ing Hrs: 50hrs		Exam Duration: 3hrs			
Unit –I						
	Fundamentals of Algo	rithms and Problem Solv	/ing: Space and Time			
1	Complexities, Order of	an algorithm, Efficiency	Analysis of Stacks and	8 hrs		
1	Queues Revisited, Recu	rsive Definitions, Recursive	e Functions, Towers of	01115		
	Hanoi, Backtracking, Re	cursion Vs. Iteration				
2 Hashing and Hash tables: Direct Address Table, Hash Table, Hash						
2	Functions, Collision Res	olution Techniques.		4 hrs		
	Graphs and Trees: Grap	ohs, Computer Representa	ation of Graphs, Trees,			
3	3 Tree Traversals, AVL Trees, 2-3 Trees, Application of Binary Trees, Tries,					
	DFS, BFS					
		Unit –II				
4	Sorting Techniques: Sorting, Bubble sort, Selection Sort, Insertion Sort,					
-	4 Merge Sort, Quick Sort, Heap Sort.					
5	Substring Search Alg	orithms: Brute-force m	nethod, Boyer-Moore	4 hrs		
	Algorithm, Knuth-Mo	orris-Pratt Algorithm, Rabi	n-Karp Algorithm	41113		
6	Graph Algorithms: Unic	on-Find Data Structure, Sho	ortest Path algorithms,	8 hrs		
	Minimum Spanning	Tree Algorithms		0 111 0		
	1	Unit –III				
		: Travelling Sales Perso	· •			
7	Problem, Fake Coin Problem, Strassen's Matrix Multiplication, Huffman					
	Coding					
8	-	n Power: Undecidability, I	P and NP Classes, P vs	5 hrs		
	NP, NP-Hard, NP-Cor	nplete				
Text B				_		
1.		narles E. Leiserson, Ronal		d Stein,		
_	-	ms, Third Edition, The MI				
2.	-	uction to the Design and A	nalysis of Algorithms. A	ddison-		
	Wesley Longman Publis	hing Co, 2012.				
	ence Books:			-		
		Solving Using Data an	d Algorithms Using C,	Taran		
-	echnologies Private Limit					
2	HackerRank / CodeChe	it / SPOJ				

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of	Chapter	Instructions
	20 Marks Each	Numbers	
1	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
ш	Q.No7	7	Solve Any 1
111	Q.No8	8	Solve Ally I

Progr	am: Bachelor of Engineer	ing	Semester - III					
Cours	e Title: Database Manage	ement System	Course Code:15ECS	C208				
L-T-P:	: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/	week				
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100					
Teach	ning Hrs: 50		Exam Duration: 3 h	rs				
		Unit –I						
	Introduction and ER Mo	odel: Introduction to DBN	NS; Data Models, Schemas					
	and Instances; Three-So	chema Architecture; Da	tabase Languages; Using					
	High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys,							
1	Database Application; Entity Types, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets. Roles and Structural Constraints;							
	Weak Entity Types; R	; ER Diagrams, Naming						
	Conventions and Design Issues.							
	Relational Data Model and Relational Algebra: Relational Model							
	Concepts; Relational Mo	odel Constraints and Rela	ational Database Schemas;					
2	Update Operations and dealing with constraint violations; Unary							
2	Relational Operations: SELECT and PROJECT; Binary Relational Operations:							
	CARTESIAN PRODUCT, J	OIN: Additional Relation	nal Operations; Relational					
	Database Design Using I	ER- to-Relational Mappir	ng.					
	SQL: SQL Data Definitio	n and Data Types; SQL o	constraints; DDL and DML					
3	statements ; JOIN			08hrs				
	operations; Complex SO	L Queries, PL/SQL.						
		Unit –II						
	Database Design							
	Informal Design Gu	idelines for Relation	Schemas; Functional	00 h				
4	Dependencies; Normal I	Forms Based on Primary	Keys; Boyce-Codd Normal	09 hrs				
	Form.							
	Introduction to Transac	tion Processing						
5	Introduction to Transaction Processing; Transactions and System							
5	concepts; Desirable Properties of Transactions; Characterizing Schedules							
	Based on- Recoverabilit	y, Serializibilty.						
		Unit –III						
	Concurrency Control Te	chniques						
6	Introduction, Two-phas	e Locking Techniques	for Concurrency Control,					
U	Dealing with Dead-lock and Starvation, Concurrency control based on Time							
	stamp Ordering.							

Database Security

7	Introduction	to	DB	Security	lssues,	Discretionary	Access	Control,	OF hrs	
/	Introduction to DB Security Issues, Discretionary Access Control, Mandatory Access Control And Role-Based Access Control, SQL Injections,					05 1115				
	SQL Attacks									

Text Books:

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 6th Ed, Pearson Education, 2011.
- 2. Shashank Tiwari , Professional NOSQL, 1st Ed, Wrox, 2011.

References:

- 1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd Ed, McGraw Hill, 2007.
- 2. Silberschatz A., Korth H.F. and Sudharshan S., Database System Concepts, 5th Ed, Mc- GrawHill, 2006.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
1	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
	Q.No7	6	Solve Any 1
	Q.No8	7	

Program: Bachelor of Engineer	Semester - III	
Course Title: Data Structure and Algorithms Lab		Course Code: 19ECSP201
L-T-P: 0-0-2 Credits: 2		Contact Hrs: 4 hrs/week
ISA Marks: 80 ESA Marks: 20		Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 56 hrs	Exam Duration: 3 hrs

Tentative plan of lab Implementation

Week	Lab Assignments
No	
1	
2	03 Programming Assignments on Stacks, Queues, Lists, Files
3	
4	01 Assignment on Fundamentals of Algorithms
5	01 Assignment on Trees
6	
7	02 Assignments on Graphs
8	01 Assignment on Sorting
9	01 Assignment on Searching
10	01 Assignment on Sorting and Searching Applications
11	
12	03 Assignments on Graph algorithms
13	
14	Open Ended Experiment

Text Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Third Edition, The MIT Press, 2009.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

2. Hemant Jain, Problem Solving Using Data and Algorithms Using C, Taran Technologies Private Limited, 2016.

HackerRank / CodeChef / SPOJ

Program: Bachelor of Enginee	Semester - III	
Course Title: Database Applic	Course Code: 15ECSP204	
L-T-P: 0-0-1.5 Credits: 1.5		Contact Hrs: 3 hrs/week
ISA Marks: 80 ESA Marks:20		Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 36 hrs	Exam Duration: 3 hrs

List of experiments/jobs planned to meet the requirements of the course.

4- Demonstration	 Introduction to RDBMS/Case study/ basic SQL commands. 	
	 Set theory, logical operators and aggregate functions. 	
	 Group by , Having clause, Views and index 	
	Basics of PL/SQL.	
5-Exercises	SQL queries on set theory, logical operators and join	
	operations.	
	 SQL queries queries on aggregate functions, group by 	
	and having clause.	
	 SQL queries on Views and nested query operations. 	
	 PL/SQL queries using triggers and cursors. 	
	 PL/SQL queries using procedures and functions. 	
3-Structured Enquiry	Database Design	
1-Open Ended	Database design & implementation	
Experiment		
Text Book:		
1. Elmasri R. and Navathe S., Fundamentals Database Systems, 7 th edition, Pearso		
Education, 2012.		
2. Steven Feuerstein, Bill Pribyl Oracle PL/SQL Programming, 6th Edition , O'Reil		

 Steven Feuerstein, Bill Priby<u>l</u> Oracle PL/SQL Programming, 6th Edition, O'Rei Media,2014.

References:

- 1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, McGraw Hill, 2007.
- 2. PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

Internal Semester	Assessment	Weightage in Marks
Assessment (80%)	Exercises	50
	Structured Enquiry	20
	Open Ended	10
	Experiment	
End Semester Assessment	ESA	20
(20%)		
	Total	100

Prog	gram: Bachelor of Engineer	ring	Semester - III		
Cou	rse Title: Corporate Comm	unications	Course Code: 22EHS	C201	
L-T-I	P: 0.5-0-0	Credits: 0.5	Contact Hrs: 1 hr/week		
ISA	Marks: 100	ESA Marks: NA	Total Marks: 100		
Теас	ching Hrs: 16		Exam Duration: NA		
	-	Unit –I			
	Communication Skills: To	ols of Communication, Liste	ning, Body		
	Language, Common Postu	ires and Gestures, Open and	l Closed Body		
1	Language, Body Language	to be used in Corporate Sce	enarios, Voice: Pitch,	4 hrs	
	Pace, and Pause, Verbal La	anguage: Positive & Negative	e Vocabulary,		
	Corporate Conversations				
	Presentation Skills: Zero R	Presentation, Individual Pres	entations, and		
2	feedback, Making Present	ations Interactive, Types of	Questions, Taking	4 hrs	
-	off and Signing off different	ntly, Captivating your Audier	nce, Corporate	- 111 3	
	Presentations				
	Spoken English: Phoneti	c and Non-Phonetic Langua	ges, Introduction to		
3	IPA, Sounds in English, Syl	lables, Word Stress, Rhythm	, Pausing, and	4 hrs	
	Intonation				
	Written English: Vocabul	ary Enhancement Strategies	, Root Words in		
4	English, Grammar Improv	ement Techniques, Dictiona	ry Usage, Similar	4 hrs	
	and Contradictory Words				
Text	t Books:				
	NA				
Refe	Reference Books:				
1.	1. Diana Booher - Communicate With Confidence, Mc Graw Hill Publishers				
2. Norman Lewis – Word Power Made Easy, Goyal Publishers					
3.	. Cambridge Advanced Lea	arner's Dictionary, Cambridg	e University Press.		

Semester – IV

Progra	am: Bachelor of Engineer	ing	Semester - IV	
Cours	e Title: Applied Statistics	with R	Course Code: 20EN	1AB209
L-T-P:	3-1-0	Credits: 4	Contact Hrs: 5 hrs/	week
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs:40 hrs	Tutorial/Practical: 28 hrs	Exam Duration: 3 h	rs
		Unit –I		
	Description of data: Introduction: Data, Type of Variables, mean,			
1	weighted mean, media	in, mode, Quartiles, Varia	nce, Coefficient of	08hrs
-	variation, skewness, His	stogram, Box plots, Norma	l QuantitleQunatile	001115
	plots			
	Probability: Introductior	n: Definition, Interpretation	of probability value,	
2		cation rule, Baye's rule,	••	06hrs
		Decision Tree Induction, Bay		
		to Data handling ,Descriptic		
	graphically, Histogram, S	kewness, Boxplot, QQ-norn	n, Decision tree	
	.	Unit –II		
	Random variables and Probability Distribution: Random variables,			
2		te and continuous random v	-	08 hrs
3		e distribution, joint probabili wariance. Theoretical distrik	•	U8 nrs
	Poisson, Normal.			
		troduction: Sampling, SRSW		
		ied Sampling, Basic terming		
4	1 0,	interval, Sample size determ	0	08 hrs
		ortions, means(single and o		
	P-value approach	, ()	<i>,,</i> 0	
	R-tutorial: Probability di	stribution, Testing of Hypot	hesis for	
	proportions, means(sing	le and differences)		
		Unit –III		
	Correlation and Regress	ion5 hours: Meaning of cor	relation and	
5	regression, coefficient of	f correlation, Linear regressi	on (ANOVA	05 hrs
	approach), Multiple line	ar regression, Logistic Regre	ssion.	
	Statistical Inference II: Test for independence of attributes (m x n			
6	contingency table) Inference based on choice of suitable test			05 hrs
	procedure(Goodness of	•		
	-	ssion with ANOVA approach	, Multiple	
	Regression with ANOVA	approach		

Text Books

- J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.
- 2. Kishor S Trivedi, probability and statistics with reliability queuing and computer science applications, 1ed, PHI, 2000.

Reference Books:

- 1. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 1ed, Sultan Chand & Sons, New Delhi, 2000.
- 2. Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2005
- 3. Sheldon M.Ross ,Introduction to Probability and Statistics for Engineers and Scientists

UNIT	8 Questions to be set of	Chapter	Instructions
	20 Marks Each	numbers	
I	Q.No1, Q.No2, Q.No	1, 2,3	Solve Any 2 out
	3		of 3
II	Q.No4, Q.No5, Q.No	4, 5	Solve Any 2 out
	6		of 3
	Q.No7	6	Solve Any 1 out
	Q.No8	7	of 2

Scheme for End Semester Assessment (ESA)

Progra	am: Bachelor of Enginee	ring	Semester - IV		
Cours	e Title: Vector Calculus a	nd Linear Algebra	Course Code: 15EMA	B243	
L-T-P:			Contact Hrs: 4 hrs / v	week	
ISA M	larks: 50	ks: 50 ESA Marks: 50 Total Marks: 100			
Teach	ing Hrs: 50		Exam Duration: 3 Hrs	S	
		Unit - I			
1	Vector Algebra: Vector Triple products,	addition, multiplication (Dot	and Cross products),	04 hrs	
2		Vector functions, Vector dif vector point function, Vector		06 hrs	
3	Vector Integration: Line and Surface integrals. Independence of path and potential functions. Green's theorem, Divergence of vector field, Divergence theorem, Curl of vector field. Stokes theorem.		ce of vector field,	10 hrs	
Unit - II			I		
4	4 Matrices and System of linear equations: Introduction to system of linear equations and its solutions, elementary row operations-echelon form, Rank of a matrix. Consistency of system of linear equation, solution of system of equations by (i) Direct methods -Gauss elimination, Gauss Jordon method (ii) Iterative methods- Guass-Seidal method. Eigen values and Eigen vectors of a matrix. Largest Eigen value and the corresponding Eigen vector by power method, Application case study.		12 hrs		
5 Vector space: Vector spaces and sub spaces- examples, Linear combinations Spanning sets, subspaces, Linear spans Row space of a matrix, Linear dependence and linear independence. Basis and dimensions, application to matrices, Rank of a matrix. Sums and direct sums, Coordinates, Application case study.		08 hrs			
Unit – III					
6		mation and its applications ms, Discrete Fourier transform	ms and its	10 hrs	

Text Books (List of books as mentioned in the approved syllabus)

- 1. David C. Lay, "Linear Algebra and its Applications", 3rd Ed., Pearson Education, 2005
- 2. Grewal B S, Higher Engineering Mathematics, 38ed, Khanna Publication, New Delhi, 2001

KLE Technological University Creating Value, Leveraging Knowledge

3. Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi,2003

References

- 3. Seymour Lipschutz & Marc Lipson, Linear Algebra, Schaums' outline
- 4. Early Transcendentals Calculus- James Stewart, Thomson Books, 5e 2007
- 5. Sastry S S, Introductory method for numerical analysis, 3ed, PHI, 2003
- 6. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 11th Ed, Sultan Chand & Sons, New Delhi, 2000.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
11	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2 out of 3
III	Q.No7, Q.No-8	6	Solve Any 1 out of 2

Program: Bache	lor of Enginee	ring	Semester - IV	
Course Title: Mi	Course Title: Microcontroller Programming and Interfacing		Course Code:	21ECSC206
L-T-P:1-0-3		Credits: 4	Contact Hrs: 7	hrs/week
ISA Marks: 100		ESA Marks: 0	Total Marks: 1	.00
Teaching Hrs:20	hrs	Tutorial/Practical: 84 hrs	Exam Duration	n: 3 hrs
		t		[
Lecture /Reading	Introduction to Microcontroller and Embedded System Microcontrollers and General Purpose Microprocessors, Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family. Links:		02-hrs	
Hands on	 Introduction to the hardware, setup, familiarizations with the working of the hardware 			03-hrs
Lecture /Reading	 Introduction to the hardware, setup, familiarizations with the working of the hardware AVR Architecture and Assembly Language Programming on AVR Microcontrollers Simplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions Set of AVR (Data Transfer Instructions, Branch Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE. 		04-hrs	
Hand on	 Assembly appropria 		rdware using	06-hrs

	Set of programs to be given on various instruction types/	
	instruction set	
	HLL Python programming on the hardware	
Review	Review I	03-hrs
	Module –II	
Lecture	AVR Time Delay and Instruction Pipeline	
/Reading	Delay Calculation of AVR, AVR Multistage execution	
	Pipeline, Timers/Counters, C Data Types,	02 hrs
	Links:	
Hands on	n AVR Timer/Counter Programming	
Lecture	AVR I/O Port Programming	
/Reading	I/O Port Pins and their functions, Role of DDR/DDRx	
	Registers in Input and output operations, Programming for	
	I/O Ports,I/O Bit Manipulations,	01-hrs
	Linker	
	Links:	
Hands on	I/O Port programming	06-hrs
Review	Review II	03-hrs
	Module –III	
Lecture	Interrupts in AVR and Interrupt Programming	
/Reading	AVR Interrupts, Interrupts vs Polling, Interrupt Service	
	Routine, Steps in executing an interrupt, Sources of	
	Interrupts, Interrupt Priority, Concept of Context Saving in	
	task switching, Enabling and Disabling Interrupts,	
	Programming Timer Interrupts, Programming external	02-hrs
	interrupts,	
	Links:	
Hands on	Interrupt Programming	06-hrs
Lecture	AVR Serial Port Programming	02-hrs
/Reading	Basics of Serial Communication, RS232 standards, RS232	
	Pins, RS232 Handshaking Signals, ATMEGA32 connections to	
	RS232, Baud Rate and UBRR Register, UDR register and	

	USART, UCSR Registers and USART Configuration,				
	Programming AVR for Serial Communication.				
	Links:				
Hands on	Serial Communication programming	03-hrs			
		03-hrs			
Review					
	Module –IV				
ecture LCD and Keyboard Interfacing		01hrs			
/Reading	LCD Interfacing, Sending Commands and Data to LCD (4 Bits				
	and/or 8 Bits at a time).				
	Links:				
Hands on	Keyboard Interfacing, Matrix Keyboard connection to AVR	06-hrs			
	Ports, Key Identification,				
Lecture	ADC, DAC and Sensor Interfacing	01 hrs			
/Reading	Need for ADC and DAC in Interfacing, ADC Characteristics,				
	ADC devices, and ATmega32 ADC features, Programming				
	A/D Converter				
	Links:				
Hands on	DAC Interfacing, Sensor Interfacing	06-hrs			
Review	Review IV				
	Module –V				
	Integration of the work done in various modules according	06-hrs			
Hands on	to the problem statement				
Final	Presentation + Project exhibition	03-hrs			
Evaluation					
Text Books:					
	A, NaimiSarmad, NaimiSepehr, ""The AVR Microcontroller and Embedded and C", Prentice Hall.	d System usi			

Reference Books:

2. J. M. Hughes, "Arduino A Technical Reference", O'Reilly

List of Experiments

Expt/Job No.	Experiment/ Job details	Slots
1.	Introduction to microcontroller Kit	1
2.	ALPs on Data transfer Instructions	1
3.	ALPs on Arithmetic& Logical Instructions	1
4.	ALPs on Loop Control Instructions	1
5.	DIP switches – To display status of DIP switches on LED	1
6.	To interface 8051 to LCD and display text messages on	2
	the LCD	
7.	HEX Keypad- To detect the key pressed and display key	2
	pressed on LCD	
8.	To rotate DC Motor and Stepper motor in	1
	Clockwise/anticlockwise direction	
9.	To interface ADC with 8051	1
10.	Course Project	2

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions	
I	Q.No1, Q.No2, Q.No3	1 & 2	Solve Any 2 out of 3	
П	Q.No4, Q.No5, Q.No6	3 &4	Solve Any 2 out of 3	
	Q.No7	5	Solve Any 1 out of 2	
	Q.No8	5		

Program: Bachelor of Engineering Semester - IV				
Course Title: Object Oriented Programming Course Code: 20E			CSC204	
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3 hrs/wee	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 40	Tutorial/Practical: 36 hrs	Exam Duration: 3hrs	
		Unit –I		
	Introduction: Introduction to object oriented programming.			
1	Characteristics of obje	ct oriented languages, Prog	ramming Basics,	4 hrs
	arrays, Functions in C++	(parameter passing technique	s.)	
	Classes and Objects: Int	roduction to Classes and Object	cts, encapsulation	
2	visibility modifiers, cons	tructor and its types, nested cla	asses, String class.	6 hrs
	UML diagrams to descril	be classes and relationships.		
ſ	Inheritance: Introduction, types of Inheritance, constructors, Abstract		C hro	
3	class, Aggregation: class	es within classes		6 hrs
		Unit –II		
4	Virtual Functions and	Polymorphism: Pointers, Ref	erence variables,	6 hrs
4	Virtual functions, Friend functions, static functions, The 'this' pointer			6 nrs
	Exception Handling: Introduction to exceptions, Throwing an Exception,			
5	Try Block, Exception Handler (Catching an Exception), Multiple			6hrs
5	exceptions. Exceptions	with arguments, Built-in	exception class	OIIIS
	hierarchy.			
6	Templates :Operator ov	erloading, Function and class t	emplates	4 hrs
		Unit –III		
7	Design Patterns: Creation	nal, Structural and Behavioura	l design patterns.	4 hrs
8	Standard Template Libra	ary: container classes: Sequence	e and Associative	4 hrs
ð	Containers			4 nrs
Textbooks				
1.	Robert Lafore, Object o	riented programming in C++,	4 th Ed, Pearson ed	ucation,
2001				
Reference Books				
1.	. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5Ed, Addison Wesley, 2013.			
-				

2. Herbert Schildt: The Complete Reference C++, 4th Ed, Tata McGraw Hill, 2017

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2& 3	Solve Any 2 out of 3
11	Q.No4, Q.No5, Q.No6	45&6	Solve Any 2 out of 3
111	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	

Pro	gram: Bachelor of Engi	neering	Semester - IV		
Course Title: Principles of Compiler Design Course Code:19ECSC			203		
L-T-	·P:3-1-0	Credits: 4	Contact Hrs: 5hrs/week		
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Теа	ching Hrs: 40 hrs	Tutorial/Practical: 28 hrs	Exam Duration: 03 hrs		
		Unit –I			
1	Introduction to co	mpilers: Brief History Of Co	mpilers, Translation		
	Process, Major Data	Structures In Compilers, Chom	sky Hierarchy, Lexical		
	Analysis: Scanning Pro	ocess, Regular Expressions For T	Tokens, Lexical Errors,		
	Applications Of Regu	ar Expressions.		06hrs	
2	Finite Automata: Introduction: Language, Automata, From Regular				
	Expressions To Deterministic Finite Automata (DFA): E-Nondeterministic				
	Finite Automata (E-NFA), NFA, DFA, DFA Optimization, Finite Automata As				
	Recognizer, Impleme	ementation Of Finite Automata 06hr			
3	Introduction to Syntax Analysis: Introduction To Grammars, Context-Free				
	Grammars (CFGs), Ambiguity In Grammars And Languages, Role Of				
	Parsing.			04 hrs	
	Unit –II				
4	Top Down Parsing:	Introduction, Left Recursion,	Left Factoring, LL (1)		
	Parsing, FIRST And FC	OLLOW Sets, Error Recovery In	Top Down Parsing.	08 hrs	
5	Bottom up Parsing: In	ntroduction, SLR (1) Parsing, Ge	neral LR (1) And LALR		
	(1) Parsing, Error Rec	overy In Bottom Up Parsing.		08 hrs	
	Unit –III				
6	Semantic Analysis: A	Attributes And Attributes Gram	nmars, Algorithm For		
	Attribute Computation	n, Symbol Table, Data Types A	nd Data Checking.	04 hrs	
7	Intermediate Code (Generation: Intermediate Code	e And Data Structure		
	For Code Generation	n, Code Generation Of Data S	tructure References,		
	Code Generation Of (Control Statements.		04 hrs	

KLE Technological University Creating Value, Leveraging Knowledge

Text Book:

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers Principles, Techniques and Tools, 2nd Edition, Pearson, 2011.
- 2. Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997.

References:

- 1. Andrew W Apple, Modern Compiler Implementation in C, Cambridge University Press, 1999.
- 2. Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2011.
- 3. Peter Linz, An Introduction to formal languages and Automata, IV edition, Narosa, 2016.
- 4. Basavaraj S Anami, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley India, 2011.

Tutorial tentative plan

Expt/Job	Brief description of experiments	No of slots
No		1 slot = 2hrs
1	Regular expressions.	01
2	NFA, DFA and DFA optimization.	02
3	Regular and Context free grammars.	01
4	Top down parsing.	01
5	Bottom up parsing.	02
6	Implementation of lexical & syntax analyzer	02
	using LEX and YACC tools.	
7	Design of CFG for validating Natural	02
	languages and implement the same.	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2 ,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4 ,5	Solve Any 2
	Q.No7	6	Solve Any 1
	Q.No8	7	Solve Ally I

Prog	ram: Bachelor of Engineeri	ng	Semester - IV		
Course Title: Operating Systems Principles and Course Code:22ECS		<u>~</u> \$C202			
Programming		C202			
L-T-P	2: 4-1-0	Credits: 5	Contact Hrs: 6hrs/v	week	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100		
Теас	hing Hrs: 50 Hrs	Tutorial/Practical: 28 hrs	Exam Duration: 3 H	Irs	
		Unit –I			
	Fundamentals of Process:	Operating System Functions	and Characteristics,		
1	Process Concept, Process C	Control		07 hrs	
	and Operations, System Ca	II, Inter Process Communication	on.		
2	-	cepts, Schedulers, Scheduling		07 hrs	
2	Algorithms, Multithreading	models and Thread API, Thre	ead library.	07 1115	
	Process Synchronization: S	ynchronization, Producer Con	sumer problem, The		
3	critical section problem, Semaphores, Classical problems of synchronization.			06 hrs	
Unit –II					
		m Model and Deadlock Chara	-		
4	-	adlock Prevention, Deadlock	Avoidance, Deadlock	06 hrs	
	Detection, Recovery from [Deadlock			
	File Management				
5	UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX Kernel			07 hrs	
	Support for Files, Directory Files, Hard and symbolic filenames, General File				
	APIs. File and Record Lockin	ng.			
	Memory Management:		· · · ·	07 hrs	
6	, ,	trategies, Background, Swa	11 0, 0		
	memory allocation, Paging, Structure of page table, Segmentation.				
Unit –III					
7	 Virtual Memory Management: Virtual Memory Management, Background, December 2 				
	Demand paging, Page replacement.				
8	 Case study: Windows 10, Design Principles, System Components Influentia Operating Systems: Macintosh Operating System and IBM OS/360 				
	Operating Systems: Wacint	osh Operating System and IBN	VI US/300		

Text Books:

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 9 ed., Wiley-India, 2019.
- 2. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in the UNIX Environment", 3 ed. Addison Wesley Professional, 2018
- 3. xv6: Programming from the Ground Up, Jonathan Bartlett Edited by Dominick Bruno, Jr 2021

Reference Books:

- 1. William Stallings,"Operating System Internals and Design Principles", 1 ed., Pearson Education, Asia, 2015
- 2. Gary Nutt," Operating System", 3 ed., Pearson Education, 2009
- 3. Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2014
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2 ed., Pearson Education, 2005.

List of Experiments

S.No	Experiment
1	Demonstration of UNIX commands related to processes, files and memory
2	The xv6 operating system, Processes in xv6,
3	Process Management: Implementation of System Call on xv6, Add a new system call in xv6
4	Inter Process Communication (IPC): Pipes and FIFO
5	Process synchronization

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Solve Any 1
	Q.No8	8	

KLE Technological University Creating Value. Leveraging Knowledge

Pro	gram: Bachelor of Engineerin	Ig	Semester - IV	
Course Title: Exploratory Data Analysis		Course Code: 21ECSC210		
L-T	L-T-P: 2-0-2 Credits: 4 Contact Hrs: 6 hrs/we		Contact Hrs: 6 hrs/week	
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100	
Теа	ching Hrs: 30	Tutorial/Practical: 28 hrs	Exam Duration: 3 hrs	
		Unit –I		
	Introduction and scientific	python: Ecosystem for c	lata science, basic	
1	python, numerical and vect	torized computation, data	manipulation, data 10 hrs	
	visualization.			
	Exploratory Data Analysi	s: Types of data: categ	orical, numerical,	
2	probability distributions, De	escriptive statistics, univaria	te and multivariate 10 hrs	
	statistics, advanced data visu	ualization, Case study		
		Unit –II		
3	Data Pre-Preprocessing: Da	ata cleaning, data integrati	on, dimensionality 10 hrs	
	reduction: feature selection	and feature extraction, data	transformation	
4	4 Supervised Learning: Linear and logistic regression, naïve Bayes classifier,			
	K-nearest neighbours			
5	Clustering: Partitioning-bas	sed, hierarchical clusteri	ng, density-based 10 hrs	
	clustering			
-		Unit –III		
6	Time-series analysis: Aut		forecasting, auto 10 hrs	
	regressive moving average m	nodels.		
Ref	erence Books:			
	1. Wes McKinney, Python for	r Data Analysis, 3rd Edition,	O'Reilly Media, 2022 (Early	
	Release).			
	2. Suresh Kumar Mukhiya ,U	Jsman Ahmed , Hands-On Ex	xploratory Data Analysis with	
	Python : Perform EDA techniques to understand, summarize, and investigate your			
	data,Packt Publishing Lim	ited, 27 March 2020.		
	3. Jiawei Han, MichelineKan	nber and Jian Pei, Data Mini	ng: Concepts and	
	Techniques, 3rd Edition, N	Aorgan Kaufmann, 2012.		

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I		1, 2	Demonstration of
П	Lab Exam on Course Project	3,4,5	Course Project
Ш		6	

Program: Bachelor of Engineering		Semester - IV
Course Title: Object Oriented Programming Lab		Course Code: 20ECSP203
L-T-P: 0-0-1.5 Credits: 1.5		Contact Hrs: 3 hrs/week
ISA Marks: 80 ESA Marks: 20		Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 42 hrs	Exam Duration: 3hrs

Experiments	Lab assignments/experiment	Number of
Number		Slots
1	Demonstration: Introduction to Code Blocks IDE (Integrated	4
	Development Environment), C++ programming basics.	
2	Exercise : Classes and objects, Inheritance, Polymorphism,	4
	Templates and Exceptions Handling	
3	Structured Enquiry : Classes and objects, Inheritance,	2
	Polymorphism, Templates and Exceptions Handling	
4	Open Ended : Data types, Classes and Objects, Inheritance	2
	polymorphism, Exception Handling. Design patterns	

Text Book:

 Robert Lafore, "Object oriented programming in C++", 4thEd, Pearson education, 2001

Reference Books:

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5Ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Ed, Tata McGraw Hill, 2017

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

	Assessment	Weightage in Marks
Continuous Internal	Exercises	40
Evaluation (80%)	Structured Enquiry	20
	Open Ended Experiment	20
End Semester Assessment	Structured Enquiry	20
(20%)		
	Total	100

KLE Technological University Creating Value, Leveraging Knowledge

Progra	am:	Bachelor of Engineer	ing	Semester - IV	
Cours	e Tit	tle: Problem Solving	and Analysis	Course Code: 22EHS	H202
L-T-P: 0.5-0-0 Cre		-0-0	Credits: 0.5	Contact Hrs: 1hrs/week	
ISA Marks: 100 ESA Marks: NA Total Marks: 100					
Teach	ing	Hrs: 16		Exam Duration: NA	
			Unit –I		
	An	alytical Thinking: An	alysis of Problems, Puzzles	for practice, Human	
1	Re	lations, Direction Tes	ts; Looking for Patterns: Nu	umber and Alphabet	4 hrs
-	Sei	ries, Coding Decoding	;; Diagrammatic Solving: Set	s and Venn diagram-	
	ba	sed puzzles; Visual Re	asoning, Clocks and Calend	ars	
2		-	: Number System, Factors		4 hrs
			oblem Solving, Ratio, Propo		
3	Ve	rbal Ability: Problem	Solving using Analogies, Se	entence Completion	4 hrs
	Di	scussions & Debates	: Team efforts in Problem S	olving; A Zero Group	
	Discussion, Mock Group Discussions, and Feedback; Discussion v/s				
4	Debate; Starting a Group Discussion: Recruitment and other Corporate				4 hrs
	Scenarios; Evaluation Parameters in a Recruitment Group Discussion,				
	Тур	pes of Initiators: Verb	al and Thought, Conclusion	of a Discussion	
Text E	Book	s:			
	NA	l l			
Refer	ence	e Books:			
	1.	R. S. Aggarwal, "A N	lodern Approach to Verbal a	and Non – Verbal Reas	oning",
		Sultan Chand and So	ons, New Delhi, 2018		
	2.	R. S. Aggarwal, "Qu	antitative Aptitude", Sultan	Chand and Sons, New	/ Delhi,
		2018			
	3.	• •	Non – Verbal Reasoning", N		
	4.		ok on Quicker Maths", BSC		
	5.		municate With Confidence,		ers
	6.		rd Power Made Easy, Goyal		
	7. Cambridge Advanced Learner's Dictionary, Cambridge University Press.			S.	
	8.	Kaplan's GRE guide			

Semester - V

Prog	ram: Bachelor of Engineer	ring	Semester - V	
Cour	Course Title: Software Engineering Co		Course Code: 22ECSC301	
L-T-P	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs		rs/week	
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Теас	hing Hrs: 40		Exam Duration: 3	nrs
		Unit - 1		
1	Software engineering et	process: Professional softw hics, Case studies, Software p activities and Coping with chan	rocesses: Software	05 hrs
2	-	<pre>pment: Agile methods, Plar rogramming, Agile project man</pre>	-	04 hrs
3	 Requirement Engineering: Functional and Non-functional requirements; The software requirements Document, Requirement specification, Requirements Engineering Processes, Requirements elicitation and analysis; Requirements validation; Requirements management, Source Control Management, Collaboration tools. 			07 hrs
Unit - 2				
4 System Modeling: Context models, Interaction Models, Structural models, Behavioral models. Design Tools.		05 hrs		
5	5 Architectural Design: Architectural Design Decision, Architectural views, Architectural patterns, Application Architectures.		05 hrs	
6	6 Software Testing: Development Testing, Test Driven Development, Release Testing, User Testing and Testing Tools.		06 hrs	
Unit - 3				
 Introduction to DevOps: DevOps Principles, Benefits of working in a DevOps environment, Lifecycle, stages, Delivery pipeline, Technical challenges and DevOps Tools 			04 hrs	
8	continuous integration, Je	and continuous delivery (CI, enkins architecture, Jenkins sec architecture, Jenkins delive	curity management,	04 hrs

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
1	Q.No1, Q.No2, Q.No3		Solve Any 2
II	Q.No4, Q.No5, Q.No6		Solve Any 2
- 111	Q.No7		Solve Any 1
	Q.No8		Solve Ally I

Program: Bachelor of Engineering Se			Semester - V	
Course Title: Computer Networks – I		Course Code: 19ECSC302		
L-T-P: 3-1-0 Credits: 4 Co		Contact Hrs:5hrs/week		
ISA Marks: 50 E		ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 40	Tutorial/Practical: 28 hrs	Exam Duration: 3 hr	s.
		Unit –I		
	Introduction: Introdu	uction to Internet; The Netv	vork Edge and Core;	
1	Delay, Loss, and Thr	oughput in Packet-Switched	Networks; Protocol	8 hrs
	Layer and Service Mo	dels: OSI and TCP/IP. Networ	ks Attacks.	
	Application Layer: P	rinciples of Network Applica	itions; The Web and	
2	HTTP; Electronic Mai	l in the Internet - SMTP; The	e Internet's Directory	8 hrs
	Service – DNS; Dyna	mically configuring a host -	DHCP; Peer-to-peer	01115
	applications			
		Unit –II		
	Transport-Layer Ser	vices: Introduction, Conne	ctionless Transport,	
3	Principles of Reliable Data Transfer Protocol, Connection-Oriented and			8 hrs
-	Connectionless Transport, Principle of Congestion Control, TCP			0 1115
	Congestion Control.			
_	Network Layer: Data	a plane: Introduction to Data	a and Control Plane,	
4	Virtual Circuit and D	atagram Networks, Internet	Protocol: Datagram	8 hrs
	Format, Fragmentation, IP Addressing			
		Unit –III		
5	Network Layer: Data	plane: NAT, IPv6, Software De	efined Network(SDN)	4 hrs
6	Network Layer: Cont	rol Plane and Network Mana	gement:SDN Control	4 hrs
•	Plane, Network Mana	agement and SNMP		4 nrs
Text E	Books:			
1.	J. F. Kurose, K. W. F	Ross, Computer Networking:	A Top-Down Approa	ch, 7th
Edition, Pearson Education, 2017.				
Reference Books:				
1. Peterson, Larry L, Computer networks : A Systems Approach, 5th Edition		on The		
1.	i cicison, carry c, co	mputer networks : A System	is Approach, 5th Luth	Jii, IIIC
1.	-	eries in networking, 2012		Jii, me

Computer Networks-I Tutorial

SI. No	Exercise	No of Slots (2 hrs/per week)
1	Demonstration of n/w commands and tools in command prompt.	1
2	Demonstration of Cisco Packet Tracer network tool: usage of hub, switch, and a router using a simple topology	1
3	Application layer protocol implementation – Manual configuration and DHCP	1
4	Application layer protocol implementation - DNS and HTTP	1
5	Application layer protocol implementation - SMTP	1
6	Demonstration of static routing using Cisco Packet Tracer	1
7	Assessment – 1 (Demonstration of a given topology using Cisco Packet Tracer)	1
8	Demonstration of socket programming using a simple message board application - Connection oriented and connectionless.	1
9	Demonstration of simple banking application using connection oriented socket programming.	1
10	Demonstration of a simple calculator application using connectionless socket programming.	1
11	Assessment – 2 (Implementation of a given application using socket programming)	1
12	Exercise on usage of Wireshark tool to capture packets in the network.	1

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	Solve Any 1
	Q.No8	6	

Program: Bachelor of Engineering Semester - V					
Course Title: System Software Course Code: 17ECS			SC302		
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3 hrs/	week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	00	
Теас	hing Hrs: 40 hrs		Exam Duration: 3h	rs	
		Unit –I			
1	Machine Archi Machine Archite	Machine Architecture: Introduction, S tecture, Simplified Instructional Cc ecture, SIC/XE Machine Architecture, S camples	mputer (SIC): SIC	6hrs	
2	Programming ExamplesAssembler: Basic Assembler Function: A Simple SIC Assembler, AssemblerAlgorithm and Data Structures, Machine Dependent Assembler Features:Instruction Formats & Addressing Modes, Program Relocation.Implementation example: AVR architecture, Machine dependent features.		10hrs		
		Unit –II			
3	Assembler M/c Independent Features and Design options: Literals, Symbol Defined Statements, Expressions, Program Blocks, Control Sections and Programming Linking, Assembler Design Options: One Pass Assembler, Multi Pass Assembler. AVR machine independent features.		8 hrs		
4	Loaders and Linkers: Basic Loader Functions: Design of an Absolute Loader,A Simple Bootstrap Loader, Machine Dependent LoaderFeatures: Relocation, Program Linking, Algorithm and Data Structures fora Linking Loader, M/c Independent Features: Automatic Library Search,Loader Options.		8 hrs		
		Unit –III			
5	Macro Processor: Basic Macro Processor Functions: Macro Definitions and Expansion, Macro Processor Algorithm and Data Structures, Machine Independent Macro Processor Features: Concatenation of Macro Parameters, Generation of Unique Labels, Conditional Macro Expansion, Keyword Macro Parameters.4 hr		4 hrs		
6	Back end of Compiler - Code generation and Machine dependent features Review of phases of compilers, code generation routines, machine dependent features.		4 hrs		
Text	Books:				
	2. Alfred V Aho,	D. Manjula, System Software, 3 rd editi Monica S. Lam, Ravi Sethi, Jeffrey D I d Tools, 2nd edition, Addison-Wesley, 2	Jllman, Compilers- Pr		

Reference Books:

- 1. Muhammad Ali Mazidi et al, The 8051 Microcontroller and Embedded systems, 2nd Edition, Pearson education, 2009
- 2. Mazidi MA, Naimisrmad, AVR microcontroller and embedded system using assembly and C, 2nd Edition, Prentice hall, 2010

Evaluation Scheme

Assessment	Weightage in Marks
ISA 1	20
ISA 2	20
Assignment	10
Total	50

Scheme for In Semester Assessment (ISA)

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4,5	Solve Any 2
	Q.No7	6	Calua Arris 1
	Q.No8	7	Solve Any 1

Program: Bachelor of Engineering		Semester - V		
Course Title: Machine Learning Course Code			Course Code: 22ECSC306	
L-T-P	2: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/week	
ISA N	Marks: 80	ESA Marks: 20	Total Marks: 100	
Teacl	hing Hrs: 40 hrs	Tutorial/Practical: 28 hrs	Exam Duration: 3 hrs	
		Unit –I		
1		d Regression: Fundamentals of ssion, evaluation.	ML, linear, ridge, lasso,	10 hrs
2		inear discriminant analysis, log , decision tree, extra trees, Bayes	e , 11	10 hrs
3	3 Ensemble learning: Bagging, boosting, stacking, random forest, resampling methods, regularization for linear and logistic regression.			10 hrs
		Unit –II		
4	Neural networks: Perceptron, gradient descent, optimization algorithms,			12 hrs
4	backpropagatior	n, hyper parameters, regularizati	on.	12 nrs
5	-	etworks: convolutional neural odel selection and evaluation, bi		12 hrs
~	Seq2Seq model	s: Recurrent neural networks, l	ong short-term memory,	
6	auto encoders.			10 hrs
Refe	rence Books:			
1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, 3rd edition.				
2. Ian Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning, MIT				
	Press,2016.			
3	. Aurelian Geron	a, Hands-On Machine Learning	with Scikit-Learn and Ten	sor Flow,
	Concepts, Tools, and Techniques to Build Intelligent Systems, Publisher: O'Reilly Media, July 2016.			
4	. Luca Pietro Gio	ovanni Antiga, Thomas Viehman	ın, Eli Stevens, Deep Learr	ning with

4. Luca Pietro Giovanni Antiga, Thomas Viehmann, Eli Stevens, Deep Learning with PyTorch Manning Publications, 2020.

List of Experiments:

Expt. No.	Experiments	No. of Slots
1	Introduction to Regression, regularization	2
2	Classification algorithms	2
3	Ensemble learning models	2
4	Perceptron networks, neural network training	2
5	Convolutional Neural Networks, State-of-the-art DNN models	2
6	Sequence models	2

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3,Q. No- 4	1, 2,3	Solve Any 3
II	Q.No5, Q.No6, Q.No7,Q.No-8	4,5,6	Solve Any 3
	Lab exam	1,2,3,4,5,6	Lab exam evaluation

Progra	Program: Bachelor of Engineering Semester - V				
Cours	Course Title: Web Technologies Lab Course Code: 21ECS		Course Code: 21ECSP	SP304	
L-T-P:	T-P: 0-0-2 Credits: 2 Contact Hrs: 4hrs/week		eek		
ISA M	A Marks: 80 ESA Marks: 20 Total Marks: 100				
Teach	ing Hrs:	Tutorial/Practical: 64 hrs	64 hrs Exam Duration: 3 hrs		
	Introduction to HTM	ML basics, JavaScript: Introdu	ction to World Wide		
1	Web, Web Applicatio	n Architecture, HTML Basics, C	ascading Style Sheets,	4 hrs	
	JavaScript Basics, Boo	otstrap			
	RESTful API using No	odeJS and Express: Introductio	n to Node.js .Building		
2	servers using the h	ttp and net modules, Node	modules and events,	12 hrs	
-	Express, REST API cl	ient, Postman, Accessing Data	, Data Security using		
	Bcrypt. API security ι	using JWT tokens.			
	Angular: Building b	locks of Angular Apps, Com	ponents, Templates,		
3	Directives. Services,	Dependency injection, Binding	s, observables, pipes,	12 hrs	
•	component commun	ications, Forms, Interacting wit	th servers using HTTP.	•	
	RouteGuard, Interceptors, Bundling and deploying applications, Hosting				
4	React: JSX, React C	Components, Interaction of C	omponents, Lifecycle	8 hrs	
	methods, Form.				
Reference Books:					
1.	Robert W. Sebesta."I	Programming the World Wide \	Neb", Pearson Publicat	ions 8th	
	Edition, 2014.	0 0			
2.		pe Coury, et al, "ng-book: The	Complete Guide to A	ngular",	
	FullStack.io Publications, 2019				
3.	. AzatMardan, "Practical Node.js: Building Real-World Scalable Web Apps", 2nd				
	Edition Apress, 2018.			-	
4.	Den Ward, "React N	lative Cookbook: Recipes for	solving common React	Native	
	development problems", 2nd Edition.2019				

Lab Plan

Expt./Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)
1	Demonstration on HTML, JavaScript	02
2	Exercise on JavaScript	01
3	Demonstration on Node	03
4	Exercise on Node	01
5	Demonstration on Angular	02
6	Exercise on Angular	01
7	Demonstration on React	02
8	Exercise on React	01
9	Structured enquiry 1 – MEAN	02
10	Structured enquiry 2 – React	02

Program: Bachelor of Engineering			Semester - V	
Course Title: System Software Lab			Course Code: 19ECSP302	
L-T-P:0-0-1.5		Credits: 1.5	Contact Hrs: 3 hrs/v	veek
ISA Ma	rks: 80	ESA Marks: 20	Total Marks: 100	
Teachin	g Hrs:	Tutorial/Practical: 42 hrs	Exam Duration: 3hrs	5
SI No	Experiments			Slots/Hrs
1	Practice programs on user defined functions , structures and programs on file handling			3 hrs
2	Introduction to basics of given assembly language Programs		3 hrs	
3	Evaluation on given assembly language Program		3 hrs	
4	Implementation of Pass 1 Assembler		3 hrs	
5	Implementation of Pass 2 Assembler		6 hrs	
6	Implementation of Pass 1 Linking loader			3 hrs
7	Implementation of Pass 2 linking loader			6 hrs
8	Course Project on identifying machine to implement assembler , learning its architectural features and design Pass 1 Assembler or Pass2 Assembler			6 hrs
1.	Leland.L.Beck and D. 1 2011.	Manjula, System Software,	3 rd edition, Pearson	Education,

 Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers- Principles, Techniques and Tools, 2nd Edition, Addison-Wesley, 2011.

Program: Bachelor of Engine	Semester - V		
Course Title: Mini Project		Course Code: 15ECSW301	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: Tutorial/Practical: 42 hrs		Exam Duration: 3 Hrs	
Church ant Evolution Maturia			

Student Evaluation Matrix

SI. No	Continuous Internal Evaluation	Assessment	Weightage in Marks	
	Review 1 :	Problem identification & Defining a problem		
1		statement, test plan and Construction of	15	
		software system		
2	Review 2 :	Software Requirement Specification (SRS)	10	
3	Review 3 :	Software Design	05	
4	4Review 4 :Construction (as per design) & testing		10	
	Review 5 &	Final Demo & exhibition		
5	peer review:	Peer review will be done after review 1 &	10	
		review 4)		
	Total			

Scheme for End Semester Assessment (ESA) ESA Evaluation (50 Marks)

SI No	Description	Marks
1	Write up – Learning from Project, Personal Contribution to	05
	project	
2	Final demo & Presentation(Solution approach to the	35
	identified problem, testing and results)	
4	Individual Contribution to the team	10
	Total	50

Prog	Program: Bachelor of Engineering Semester - V			
Cour	Course Title: Statistics and probability		Course Code: 15EMAB303	
L-T-P	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs/week		Contact Hrs: 3 hrs/week	
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Теас	hing Hrs: 40 hrs		Exam Duration: 3 Hrs	
		Unit – I		
1 Description of Data Introduction : Data, Variables, Graphical representation and interpretation of data, Measure of Skewness, Comparison of data sets using central tendency and dispersion, Choice of suitable measure for data analysis				
2	2 Correlation and Regression: Correlation and Regression: Meaning, scatter diagram, Karl Pearson's coefficient of correlation, Limits of correlation coefficient. Linear regression, regression coefficients, properties, Angle between two regression lines, Examples			
3	3 Probability: Introduction-Definition, Axioms, addition and multiplication rule of probability (without proof), conditional probability, Baye's rule –examples			6 hrs
Unit – II				
4 Theoretical Distributions: Random variables-simple Examples, Discrete and continuous random variables; Theoretical distributions: Binomial, Poisson, Exponential, Normal, Uniform				
5 Sampling Distribution: Introduction-Sampling, Sampling distribution, Standard error, Null and alternate hypothesis, Type-I and Type-II errors, level of significance, Confidence limits for means, testing of hypothesis for means; large and small samples, Student's t-test and F-test.			10	
Unit – III				
6			8 hrs	

Semester - VI

Progr	Program: Bachelor of Engineering Semester - VI			
Course Title: Computer Networks - 2 Course Code: 23E		Course Code: 23ECSC	SC303	
L-T-P: 3-0-0 Credits		Credits: 3	Contact Hrs: 3 hrs/we	ek
ISA Marks: 50 ESA Marks: 50 Total Mar		Total Marks: 100		
Teach	ning Hrs: 40 hrs		Exam Duration: 3hrs	
		Unit –I		
1	Network Layer- Routing	Algorithms: The Link-State	(LS) Routing Algorithm,	
	The Distance-Vector (D)	/) Routing Algorithm, Hierar	chical Routing, Routing	
	in the Internet, intra-AS	Routing in the Internet: RIP,	Intra-AS Routing in the	
	Internet: OSPF, Inter-AS	S Routing: BGP. Broadcast a	and Multicast Routing,	
	Broadcast Routing Algo	rithms.		8 hrs
2	Network Layer – Queu	ing theory: Router structur	e, Buffering strategies:	
	Input queuing, Outpu	t queuing, Application of	f queuing theory for	
	performance of queuin	g mechanisms: M/M/1 sys	stem, M/M/m system,	
	M/M/1/B system.			8 hrs
	Unit –II			
3	Data Link Layer: Intro	duction to the Link Layer,	Error-Detection and -	
	Correction Techniques : Parity Checks, Check summing Methods, Cyclic			
	Redundancy Check (CRC)binary and polynomial, ,Hamming Code, Multiple			
	Access Links and Protocols: Channel Partitioning Protocols, Random Access			
	Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns			
	Protocols, The Link-Laye	cols, The Link-Layer Protocol for Cable Internet Access.		8 hrs
4	Switched Local Area No	etworks: Link-Layer Addres	sing and ARP, Ethernet	
	802.3, Token ring 802.	5, FDDI and LAN standard	s, Link-Layer Switches,	
	Virtual Local Area Ne	tworks (VLANs), Multipro	tocol Label Switching	
	(MPLS),			8 hrs
		Unit –III		1
5	Wireless and Mobile Ne	etworks: Introduction; Wire	less Links and Network	
	Characteristics – SDMA,	TDMA, FDMA, CDMA; Wire	eless LANs - The 802.11	
	Architecture, The 802.11 MAC Protocol, The IEEE 802.11 Frame, Mobility			
	in the Same IP Subnet, A	Advanced Features in 802.1	1;	4 hrs
6	Cellular Networks: 4G a	nd 5G: 4G LTE Cellular Netv	vorks: Architecture and	
	Elements; LTE Protocols	Stacks; LTE Radio Access N	etwork; Additional LTE	
	Functions: Network At	tachment and Power Mar	nagement; The Global	
	Cellular Network: A Net	work of Networks; 5G Cellu	lar Networks	4 hrs

Text Books

- 1. J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 8th Edition, Pearson Education, 2021.
- 2. Raj Jain, "Performance evaluation of computer systems", Wiley, 1991.

Reference Books:

- Behrouz A. Forouzan, "Data Communications and Networking with TCPIP Protocol Suite", 6th Edition, McGraw Hill, 2021
- 2. Larry Peterson, Bruce Davie "Computer networks : a systems approach", 6th Edition, 2021.

UNIT	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Q No 1 is compulsory,
			Solve Any 1 out of Q
			Nos 2 and 3
II	Q.No4, Q.No5, Q.No6	3, 4	Q No 4 is compulsory,
			Solve Any 1 out of Q
			Nos 5 and 6
	Q.No7	5	Solve Any 1
	Q.No8	6	Solve Ally I

Scheme for End Semester Assessment (ESA)

Progra	am: Bachelor of Engi	neering	Semester - VI	
Course Title: Cloud computing		Course Code: 23ECSC305		
L-T-P:2-0-1 Credits: 3		Contact Hrs: 4 hrs/week		
ISA Marks: 50 ESA Marks: 50 Total Marks: 10		Total Marks: 100		
Teach	Teaching Hrs: 30Tutorial/Practical: 28 hrsExam Duration: 3 hrs			
		Unit –I		
	Introduction: Motiv	vation for cloud computing, el	astic computing and its	
1	advantages: Busines	ss models for cloud providers,	Types of clouds: multi-	4 hrs
-	cloud, cloud platfor	ms. Data center infrastructu	re: Network equipment	4 111 3
	and multi-port serve	er interfaces, Leaf spine netw	ork topology.	
	Virtualization and	containerization: Virtual Ma	chines: approaches to	
	virtualization, leve	ls of trust, live migration	of virtual machines.	
	Advantages and dis	advantages of virtual machin	es, isolation facilities in	
2	an operating system	m, Linux namespaces used t	for isolation, container	4 hrs
	approach for isol	ated apps, Docker contain	ers, Docker software	
	components, items	in a Dockerfile. Monolithic	applications in a data	
	center.			
		Unit –II		
	Automation and Orchestration: Automation in data centers, levels of			
	automation, zero	touch provisioning and In	frastructure as code,	
3	automation tools, Orchestration: Automation with a larger scope,			4 hrs
5	Kubernetes: An ex	ample container orchestration	on system, Kubernetes	41113
	cluster model, Kube	ernetes pods: creation, templ	ates, and binding time,	
	Kubernetes nodes a	nd control plane, worker node	e software components.	
	Microservices: Th	ne Microservices approad	ch, advantages and	
4	disadvantages o	f Microservices, Micros	services Granularity,	4 hrs
•	Communication pr	otocols used for Microser	vices, communication	
	among Microservice	es, creating a Microservices, s	erver mesh proxy.	
		Unit –III		
	Serverless comput	ing and event processing :T	raditional client-server	
	architecture, scalir	ng a server in a cloud er	nvironment, Serverless	
5	computing approac	h, stateless servers and conta	iners, Architecture of a	3 hrs
	Serverless infrastructure, An example of Serverless processing,			
	advantages and disa	advantages of Serverless com	puting.	
	-	Introduction to DevOps, DevO		
6		figuration management us	-	3 hrs
	Modules, Ad Hoc, P	laybooks, Ansible for IT auton	nation.	

KLE Technological University Creating Value, Leveraging Knowledge

Text Books:

- 1. Douglas Comer, "The Cloud Computing: The Future of Computing", 1st ed, Chapman and Hall/CRC 1 July 2021.
- 2. Dan C. Marinescu, Cloud Computing Theory and Practice, 3rd Edition, Elsevier February 15, 2022.

Reference Books:

- 1. Rajkumar Buyya, Christian Vecchiola, S.ThamaraiSelvi, Mastering Cloud Computing, McGraw Hill, 2013.
- 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach,

McGraw Hil, 2010.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
1	Q.No1, Q.No2	1, 2, 3	Solve Any 2 out of 3
11	Q.No3, Q.No3	4,5,6	Solve Any 2 out of 3
111	Q.No5	7	Solve Any 1 out of 2
	Q.No6	8	

Program: Bachelor of Er	Semester - VI	
Course Title: Computer Network Laboratory		Course Code: 20ECSP305
L-T-P:0-0-1.5 Credits: 1.5		Contact Hrs: 3hrs/week
ISA Marks: 80 ESA Marks: 20		Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 42 hrs	Exam Duration: 3 hrs

List of Experiments

S.No	Experiments	Number of lab
		Slots (3 hrs)
1.	Demonstration of Mininet and Performance analysis of IEEE	1
1.	802.11 MAC protocols.	
2.	Traffic measurement and traffic volume control using the	1
۷.	POX controller.	
3.	Implementation of load balancing/routing technique.	2
4.	Error Detection and Correction using Socket programming.	1
5.	Demonstration of Junos.	1
6.	Configuration and analysis of VLAN.	1
7.	Configuration and analysis of STP/MPLS.	1
8.	Configuration and analysis of OSPF and BGP routing	2
0.	protocols.	
9.	Experimental analysis of the Handover Procedure in a WiFi	1
Э.	Network using Mininet	
10.	Performance analysis of IEEE 802.11 MAC protocols.	1

Program: Bachelor of Engir	Semester - VI	
Course Title: Minor Project 1		Course Code: 23ECSW303
L-T-P: 1-0-4 Credits: 5		Contact Hrs: 3 hrs/week
ISA Marks: 50 ESA Marks: 50		Total Marks: 100
Teaching Hrs: 20	Tutorial/Practical: 42 hrs	Exam Duration: 3 hrs

Sixth semester minor project 1 theme: Usage of Design Principles in building the solution.

Minor Project 1 aims to design and develop a Java Full Stack Web solution using RESTful APIs - design patterns, User experience (UX) design and API (application programming interface) that are generally followed in industries.

Project Domains: United Nations Sustainable Development Goals (SDGs)

- 1. No Poverty
- 2. Zero Hunger
- 3. Good Health and Well-being
- 4. Quality Education
- 5. Gender Equality
- 6. Clean Water and Sanitation
- 7. Affordable and Clean Energy
- 8. Decent Work and Economic Growth
- 9. Industry, Innovation, and Infrastructure
- 10. Reduced Inequality
- 11. Sustainable Cities and Communities
- 12. Responsible Consumption and Production
- 13. Climate Action
- 14. Life Below Water
- 15. Life on Land
- 16. Peace, Justice, and Strong Institutions
- 17. Partnerships for the Goals

Student Evaluation Matrix:

Project will have one Prerequisite test and 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation
Proroquisito tost	Prerequisite test on OOPs and Database Management
Prerequisite test	Systems fundamentals
Review-1	Identification of problem, objectives, requirement
Keview-1	analysis, UI design and mapping to SDG goals.
Review-2	Implementation: coding as per standards, module testing.
Review-3	System integration, testing and demo of the final project

Scheme for End Semester Assessment (ESA)

SI. No.	Expectation	Marks
1	Write up	05
	1. Problem Statement and Objectives.	
	2. System design with brief description.	
	3. Concluding remarks.	
2	Presentation: Prepare minimum of 15-18 slides of	05
	presentation with consultation of your respective guides.	
3	Demo (Complete execution of the project with results) and	30
	Viva voce.	
4.	Project Report / Portfolio.	10

Program: Bachelor of Engineering		Semester - VI
Course Title: Minor Project - 2		Course Code: 23ECSW304
L-T-P: 0-0-5	Credits: 5	Contact Hrs: 3hrs/week
ISA Marks: 50 ESA Marks: 50		Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 42 hrs	Exam Duration: 3 hrs

The objective of the minor project is to develop deeper understanding of the chosen area of technology vertical and develop applications with a comprehensive and systematic approach.

Project Domains:

Networking	Data Engineering	System	AI & ML	Industry/Domain	
		Engineering			
Internet of	Data Analytics	Parallel	Supervised	As per industry	
Things		Computing	Learning	requirements	
Software	Data Processing	High	Unsupervised	-	
Defined	(Image/Video/Audio/Text)	Performance	Learning		
Network		Computing			
Cloud	Natural language	Quantum	Deep	-	
Computing	processing	Computing	Learning		
Block Chains	Computer Vision	-	Generative	-	
			Models		
Wireless Ad-	-	-	-	-	
hoc &					
Sensor					
Networks					
	Any other related themes				

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Assessment We	eightage in Marks	Assessment Weightage in Marks
	Review-1	10
ISA	Review-2	20
	Review-3	20
ESA		50
Total		100

Scheme for In-Semester Assessment (ISA)

ISA (periodic reviews)	Review Expectation	Guide Marks	Reviewer Marks	Total Marks
Review-1	Identification of problem, objectives, requirement analysis and report.	5	5	10
Review-2	Design and Implementation: coding as per standards, module testing.	10	10	20
Review-3	System testing and demo of the final project, quality of code, result analysis and project report.	10	10	20
	Total	25	25	50

Scheme for End Semester Assessment (ESA)

Parameters	Pl's	Max Marks	CO	BL
Demo with solution approach to the	14.3.1	30	1	4
identified problem				
Testing & Results	3.4.2	05	2	4
Presentation	9.3.1	05	3	3
Individual Contribution	14.3.1	05	3	3
Report	10.1.2	05	3	3
Total = 50				

Professional Elective – 1, 2 & 3 Data Engineering

Progra	am: Bachelor of Engineer	ring		
Cours	e Title: Computer Vision		Course Code: 18ECSE	301
L-T-P:	2-0-1	Credits: 3	Contact Hrs: 4hrs/week	
ISA M	arks: 80	ESA Marks: 20	Total Marks: 100	
Teach	ing Hrs: 30	Tutorial/Practical: 28 hrs	Exam Duration: 3 hrs	
		.Unit – I	L	
1	Introduction: Computer representation, Linear systems, Convolu	iter Vision Overview, utions and cross-correlations	Pixels and image Filters: ;; Lab: Basics, Filters	4hrs
2	Features and filtering: Edge detection: Gaussian, Sobel filters, Canny edge detector. Features and fitting: RANSAC Local features. Harris corner			8hrs
		Unit – II		
3	Semantic segmentation: Perceptual grouping, Agglomerative clustering, Super pixels and over segmentation; Clustering: K-means, Mean shift; Visual Bag of Words: Texture features, Visual bag of words; Lab: Resizing, clustering, recognition		6 hrs	
4	Motion: Optical Flow, Lucas-Kanade method, Horn-Schunk Method, Pyramids for large motion, Tracking: Feature Tracking, Lucas KanadeTomasi (KLT) tracker; Lab: Object detection, optical flow		6hrs	
		Unit – III		
5	-	: Image stitching, Image nality reduction, Face ide		6hrs
Refere	ence Books:			
1. 2.	D. Forsyth and J. Ponce India, 2 nd Ed, 2015.	ter Vision: Algorithms and A , Computer Vision: A Mode	rn Approach, Pearson E	Education
ງ ວ.	Cambridge University Pr	Zisserman, Multiple View (ress, 2nd Edition, 2004.	Seometry in Compute	er vision,

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 3 out of 4
Ш	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 3 out of 4
Ш	Lab exam	5	Lab exam evaluation

KLE Technological University Creating Value, Leveraging Knowledge

Program: Bachelor of Engineering				
Course Title: Algorithmic Problem Solving Course Code: 23ECSE309				
L-T-P:	2-0-4	Credits: 6	Contact Hrs: 10 hrs	/week
ISA M	arks: 70	ESA Marks: 30	Total Marks: 100	
Teach	ing Hrs: 30	Tutorial/Practical: 112 hrs	Exam Duration: NA	
		Unit –I		
1	Design Philosophy an	d Reflections: Algorithm Des	ign Techniques and	5 hrs
-	Principles, Case Studie	s and Reflections		51115
2	Advanced Data Struct	ures: Tricks and Techniques,	Matrix, Grids, Trees	5 hrs
2	and Variants, Lists, Ski	o lists, Hash, Trie, Union-Find	and Variants	5 1113
3	Dynamic Programmin	g: Common and Typical Prob	olem Sets, Idea and	5 hrs
5	Intuition, Design of DP Problems			51113
4	Array Query: Need, Types and Variants, Design and Philosophy, The		5 hrs	
-	Pathway From Lookup Table Fenwick Trees.			51113
5	Search Space Analysis	: Search Space, Graph Algorith	nms, Heuristic Space	5 hrs
	Analysis			51115
6	Problem Solving: Assortment of Problems, CSES Problem Set		5 hrs	
Text B	ooks			
1.	•	on to the Design and Analysis	s of Algorithms", Thi	rd Edition,
2	Pearson Education, 20			
Ζ.		Algorithmic Puzzles", First Ec	lition, Oxford Univer	rsity Press,
	2011.			
3. Online Coding Platforms				
Reference Books:				
1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2010.				

Scheme for End Semester Assessment (ESA)

UNIT	Questions	Chapter numbers	Instructions
I	6 to 8 questions	1,2,3,4,5,6	Solve all

Lab Experiments:

Experiment No.	Concept	Hours
1	Design Techniques and Reflections	8
2	Mathematics in Competitive Programming	16
3	Dynamic Programming	16
4	Array Query and Case Studies	16
5	Search Space Analysis	16
6	Problem Assortments	16
7	CSES Problem Set	16

Progra	am: Bachelor of Engineeri	ng			
Course Title: Semantic Web			Course Code: 19EC	Course Code: 19ECSE303	
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3hrs/	week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40 hrs			Exam Duration: 03	3 hrs	
		Unit –I			
	Introduction to Semantics: History of the Web, Limitations, Vision of				
1	Semantic Web, Principles, Data Integration Across Web, Data Modeling				
	Methods, Semantic Relationships, Metadata, Perpetual Data				
2	Expressing Meaning: Triple Store, Merging Graphs, Querying: Case			4 hrs	
	Study				
3	-		eed Forward Inference,	8 hrs	
	Searching for Connections, Linked Data, Freebase				
		Unit –II			
4	Working with Semantics: RDF—The Basis of the Semantic Web, OWL,			8 hrs	
-	Metadata with RDF, Metadata Taxonomies, Ontology				
5	Reasoning and Social Web: Reasoning types: Approximate Reasoning			8 hrs	
	and Bounded Reasoning, Social Semantic Web, Semantic Crawlers				
		Unit –III			
	Semantic Modeling: Semantic Modeling, Semantic Web Applications,				
6	Logic for Semantic Web, Case Studies: Dr. Watson, Yahoo!				
	SearchMonkey				
Text B	ooks				
1.	-		elen and Rinke Hoekstra, A	Semantic	
	Web Primer, MIT Press; 3				
2.		•	ogramming the Semantic V Media; 2 edition, July 2009		
Refere	ence Books:	n Graph Data, O Kenry K	vieula, 2 euition, july 2003.	•	
1.	Pascal Hitzler, Markus K Technologies, Chapman		olph, Foundations of Sema)09.	antic Web	
2.	•		c Web for the Working C		
	Effective Modeling in RD	FS and OWL, Morgan Ka	aufmann; 2nd edition, 201	1.	
3.		•	ndrew Perez-Lopez, and N Publishers, 1 edition 2009		

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2	
П	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2	
	Q.No7	6	Solve Any 1	
	Q.No8	6	,	

KLE Technological University Creating Value, Leveraging Knowledge

Prog	ram: Bachelor of Eng	ineering			
Cour	se Title: Signals & Sys	Course Code: 21EC	Course Code: 21ECSE313		
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3hrs/week		
ISA Marks: 50		ESA Marks: 50 Total Marks: 10			
Teaching Hrs: 40		Exam Duration: 3		hrs	
Unit –I					
1	Signal Representation: Definition of a signals and systems, classification of signals, (analog and discrete signal, periodic and aperiodic, deterministic and random signals, even and odd signals, energy and power), basic operation on signals (independent variable, dependent variable , time scaling, multiplication, time reversal), elementary signals (Impulse, step, ramp, sinusoidal, complex exponential), Systems Interconnections (series, parallel and cascade), properties of linear systems. (homogeneity, superposition, linearity and time invariance, stability, memory, causality)				
2	LTI System Representation: Impulse response representation and properties, Convolution, convolution sum and convolution integral. Differential and difference equation Representation, Block diagram representation			10hrs	
		Unit –II			
3	Fourier series(deriv	tion for signals: Introduct ation of series excluded) ar insform (derivation of transf	d their properties.	10hrs	
4	of LTI systems, Four	rier transform: Introduction, rier transform representation presentation of discrete time nals.	of periodic signals,	10hrs	
Unit –III					
5	transforms: Inverse a	ion of z-transform, Properties of z-transforms (Partial Fraction n -transform, Transform of LTI.	•	10hrs	

Text Book (List of books as mentioned in the approved syllabus)

- 1. Simon Haykin and Barry Van Veen , Signals and Systems, 2nd edition Wiley,2007
- 2. Alan V Oppenheim ,Alan S Willsky and S. Hamid Nawab , Signals and Systems, Second, PHI public,1997

Reference Books:

- 1. H. P Hsu, R. Ranjan, Signals and Systems ,; 2nd edition, McGraw Hill ,2017
- GaneshRaoandSatishTunga,,SignalsandSystems1st edition, Cengage India, 2017
- 3. M.J.Roberts, Fundamentals of Signals and Systems 2nd edition, McGraw Hill Education, 2017

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3	
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3	
	Q.No7	5	Solve Any 1 out of 2	
	Q.No8	5		

Prog	ram: Bachelor of Engineer	ing		
Cour	se Title: Fundamentals of	Image and Video	Course Code: 21	ECSE212
Proc	essing		Course coue. 21	
L-T-P	2: 2-0-1	Credits: 3	Contact Hrs: 4h	rs/week
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100)
Теас	hing Hrs: 40	Tutorial/Practical: 28 hrs	Exam Duration:	3 hrs
		Unit –I		
1	Introduction to Image	and Video Processing:	Introduction, 2-	
	dimensional (2D) and	3-dimensional (3D) signal	s, analog/digital	4 1 .
	dichotomy, electromagne	etic spectrum, and applicati	ons.	4hrs
2	Signals and Systems: F	undamentals of 2D signa	ls and systems.	
	Complex exponential si	gnals, linear space-invaria	nt systems, 2D	A have
	convolution, and filtering	g in the spatial domain.		4 hrs
3	Fourier Transform and	Sampling: 2D Fourier trans	form, sampling,	4 hrs
	discrete Fourier transform	m, and filtering in the freque	ency domain.	4 nrs
4	Motion Estimation: Ap	oplications of motion est	timation, phase	
	correlation, block match	ing, spatio-temporal gradie	nt methods, and	4 hrs
	fundamentals of color image processing.			
		Unit –II		
5	Image Enhancement: Po	int-wise intensity transform	ation, histogram	
	processing, linear and non-linear noise smoothing, sharpening, 3			
	homomorphic filtering, p	seudo-coloring, and video e	nhancement.	0 1110
6	Image Recovery: Introdu	uction to image and video	recovery, image	
		or notation for images, i	- .	
		s (CLS), set-theoretic restora		
	_	rithms, and spatially adaptiv	-	
		r, Wiener noise smoothing		
		m a posteriori estimation	, and Bayesian	5 hrs
	restoration algorithms.			
7	-	pression: Elements of info	•	
		ength coding and fax, ari		
		and predictive coding. Sc		
		al pulse-code modulation	-	
		n coding, JPEG, and su	b band image	5 hrs
	compression.			
8	•	lotion-compensated hybrid	•	
	·	standards including H.261	., н.263, н.264,	3 hrs
	H.265, MPEG-1, MPEG-2,			
		Unit –III		

9	Image and Video Segmentation : Intensity discontinuity and intensity similarity, watersheds and K-means algorithms, and other advanced methods.	4 hrs
10	Sparsity: Sparsity-promoting norms, matching pursuit algorithm, smooth reformulations, and an overview of the applications.	4 hrs

Text Books:

- 1. R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 4th edition, Pearson Education(Asia) Pte. Ltd/Prentice Hall of India, 2018.
- 2. M. Tekalp, "Digital Video Processing", 2nd edition, Prentice Hall, USA, 2015.

Reference Books:

- 3. Anil K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009.

	Scheme for Life Semester Assessment (LSA)					
UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions			
I	Q.No1, Q.No2, Q.No3	1, 2,3,4	Solve Any 2 out of 3			
11	Q.No4, Q.No5, Q.No6	5,6,7,8	Solve Any 2 out of 3			
	Q.No7	9	Solve Any 1 out of			
	Q.No8	19	2			

Scheme for End Semester Assessment (ESA)

Course Title: Neural Network and Deep Learning Course code: 21ECSE314 L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/week ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hrs: 30hrs Tutorial/Practical: 28 hrs Exam Duration: 3 hrs Unit-1 Introduction to Deep Neural Network – 1: Convolution and pooling, Activation functions, data processing, Batch Normalization, transfer learning, back propagation algorithms. 6 hrs 2 Deep Neural Network – 2: Update rules, hyper parameter tuning, vs learning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet, MobileNet 8 hrs 3 Deep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc) /Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super- Resolution GAN, Cycle GAN 8 hrs 4 Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs 5 Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs 7 Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 9 hrs 8 Deep Learning with Python, Second Edition, Secont acting with Python, Second Edition, Secont Reson, Python Machine Learning: Machine Learning and Deep Learning with Python,	Pro	gram: Bachelor of Engin	eering		
ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hrs: 30hrs Tutorial/Practical: 28 hrs Exam Duration: 3 hrs 1 Introduction to Deep Neural Network – 1: Convolution and pooling, Activation functions, data processing, Batch Normalization, transfer learning, back propagation algorithms. 6 hrs 2 Deep Neural Network – 2: Update rules, hyper parameter tuning, vs learning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet,MobileNet 8 hrs 3 Deep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc) ,Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super-Resolution GAN, Cycle GAN 8 hrs 4 Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs 5 Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs 1 Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science , edition 3 2 2 Deep Learning with Python, Second Edition, sebastian Raschka, Vahid Mirjalili. 8 hrs Reference book: 1 Con Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili.	Cou	rse Title: Neural Netwo	rk and Deep Learning	Course code: 21ECSE	314
Teaching Hrs: 30hrs Tutorial/Practical: 28 hrs Exam Duration: 3 hrs Unit-I Introduction to Deep Neural Network – 1: Convolution and pooling, Activation functions, data processing, Batch Normalization, transfer learning, back propagation algorithms. 6 hrs Deep Neural Network – 2: Update rules, hyper parameter tuning, vs learning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet,MobileNet 8 hrs Deep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc) ,Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super- Resolution GAN, Cycle GAN 8 hrs Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs Text book: 1. Tom Mitchell., Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. 2 Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016	L-T-I	P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/we	eek
Unit-I Introduction to Deep Neural Network – 1: Convolution and pooling, Activation functions, data processing, Batch Normalization, transfer learning, back propagation algorithms. 6 hrs Deep Neural Network – 2: Update rules, hyper parameter tuning, vs learning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet,MobileNet 8 hrs Deep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc) ,Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super- Resolution GAN, Cycle GAN 8 hrs Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs Text book: 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 2. 1. Tom Mitchell., Machine Learning, Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 1. 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 1. 1. Christopher Bishop., Pattern Recognition and Machine Learni	ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Introduction to Deep Neural Network – 1: Convolution and pooling, Activation functions, data processing, Batch Normalization, transfer learning, back propagation algorithms. 6 hrs Deep Neural Network – 2: Update rules, hyper parameter tuning, vs learning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet,MobileNet 8 hrs Deep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc) /Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super- Resolution GAN, Cycle GAN 8 hrs Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs Text book: 1. Tom Mitchell., Machine Learning: Mc Graw Hill, McGraw-Hill Science ,edition 3 2. 2. Deep Learning with Python, Second Edition, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. 4 hrs	Теас	ching Hrs: 30hrs	Tutorial/Practical: 28 hrs	Exam Duration: 3 hrs	;
1 Activation functions, data processing, Batch Normalization, transfer learning, back propagation algorithms. 6 hrs 2 Deep Neural Network – 2: Update rules, hyper parameter tuning, vs learning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet,MobileNet 8 hrs 3 Deep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc), Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super-Resolution GAN, Cycle GAN 8 hrs 4 Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs 5 Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs 7 Text book: 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 2. 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. 4 hrs 7 Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016			Unit-I		
Iearning, back propagation algorithms. Deep Neural Network - 2: Update rules, hyper parameter tuning, vs Iearning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet,MobileNet Berning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet,MobileNet 8 hrs Beep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc) ,Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super- Resolution GAN, Cycle GAN 8 hrs Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs Text book: 1. Tom Mitchell., Machine Learning: Mc Graw Hill, McGraw-Hill Science ,edition 3 3 2. Deep Learning With Python, Second Edition, 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016		Introduction to Deep	Neural Network – 1: Conv	volution and pooling,	
Deep Neural Network - 2: Update rules, hyper parameter tuning, vs Iearning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet,MobileNet Berning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet,MobileNet Beep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc) ,Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super-Resolution GAN, Cycle GAN Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks Text book: 1. Tom Mitchell., Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016	1	Activation functions,	data processing, Batch No	ormalization, transfer	6 hrs
2 learning rate scheduling, data augmentation Architectures: AlexNet, VGG, ResNet, MobileNet 8 hrs 3 Deep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc), Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super- Resolution GAN, Cycle GAN 8 hrs 4 Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs 5 Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 2. 2. Deep Learning with Python, Second Edition, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016		learning, back propagation algorithms.			
ResNet,MobileNet 8 hrs Image: Set		Deep Neural Networ	k – 2: Update rules, hyper	parameter tuning, vs	
Unit-II Jeep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc), Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super-Resolution GAN, Cycle GAN 8 hrs Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs Text book: 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 2. Deep Learning with Python, Second Edition, 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016	2	learning rate schedulir	g, data augmentation Archite	ctures: AlexNet, VGG,	
3 Deep Unsupervised Learning: Autoencoders (standard, denoising, contractive etc) ,Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super-Resolution GAN, Cycle GAN 8 hrs 4 Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs 5 Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs 1 Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 3 2. Deep Learning with Python, Second Edition, Sebastian Raschka, Vahid Mirjalili. 3 Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 4 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016		ResNet,MobileNet			8 hrs
 contractive etc) ,Variational Autoencoders, Adversarial Generative Networks, Adversarial Examples and attacks, Conditional GAN, Super- Resolution GAN, Cycle GAN Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 Deep Learning with Python, Second Edition, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Keference book: Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 			Unit-II		
 Networks, Adversarial Examples and attacks, Conditional GAN, Super- Resolution GAN, Cycle GAN Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 Deep Learning with Python, Second Edition, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 		Deep Unsupervised	Learning: Autoencoders (standard, denoising,	
Networks, Adversarial Examples and attacks, Conditional GAN, Super- Resolution GAN, Cycle GAN 8 hrs Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs Text book: 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 3 2. Deep Learning with Python, Second Edition, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Python Machine Learning with Python, sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 4 1. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 1	3	contractive etc) ,Va	riational Autoencoders, Ad	versarial Generative	
4 Recurrent Neural Networks: Introduction, Long Short-Term Memory Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs 5 Unit-III 5 Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs 7 Text book: 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 2. Deep Learning with Python, Second Edition, 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. 7 Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016	5	Networks, Adversarial	Examples and attacks, Con	ditional GAN, Super-	8 hrs
4 Network, Implementation of RNN & LSTM, Embeddings & Word2vec, Sentiment Prediction RNN 6 hrs 5 Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs 5 Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 3 2. Deep Learning with Python, Second Edition, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016		Resolution GAN, Cycle	GAN		
Sentiment Prediction RNN 6 hrs Unit-III Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs Text book: 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 3 2. Deep Learning with Python, Second Edition, 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016		Recurrent Neural Ne	tworks: Introduction, Long	Short-Term Memory	
Sentiment Prediction RNN Unit-III Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs Text book: 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 2. Deep Learning with Python, Second Edition, 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016	4	Network, Implementa	tion of RNN & LSTM, Embe	eddings & Word2vec,	6 brs
Improving Deep Neural Networks: Regularization, Mini-batch Gradient Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks4 hrsText book:1Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 32Deep Learning with Python, Second Edition,3Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili.Reference book:1Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016		Sentiment Prediction F	RNN		0 1113
5 Descent, Hyper parameter Tuning, Batch Normalization and Programming Frameworks 4 hrs 7ext book: 1. 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 2. Deep Learning with Python, Second Edition, 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016			Unit-III		
Frameworks 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 2. Deep Learning with Python, Second Edition, 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016		Improving Deep Neur	al Networks: Regularization,	Mini-batch Gradient	
 Text book: Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 Deep Learning with Python, Second Edition, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 	5	Descent, Hyper parameter Tuning, Batch Normalization and Programming 4 hrs			4 hrs
 Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science ,edition 3 Deep Learning with Python, Second Edition, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 					
 Deep Learning with Python, Second Edition, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 	Text				
 Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 			-	cGraw-Hill Science ,edi	tion 3
 scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili. Reference book: Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 			•		
 Reference book: 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 	3.	•			•
 Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016 		scikit-learn, and Ten	sorFlow 2, 3rd Edition, Sebasi	han Raschka, Vahid Mir	jalili.
2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016	Refe	erence book:			
Techniques to Build Intelligent Systems ,By Aurélien Géron , Publisher: O'Reilly Media , July 2016	1.	Christopher Bishop., Pa	ttern Recognition and Machir	ne Learning, Springer, 2	006
, July 2016	2.	Hands-On Machine Lea	rning with Scikit-Learn and To	ensorFlow, Concepts, To	ools, and
		Techniques to Build Inte	elligent Systems ,By Aurélien G	Géron , Publisher: O'Rei	lly Media
3. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty.		, July 2016			
	3.	Advanced Machine Lea	rning with Python Paperback,	28 Jul 2016 by John He	earty.

List of experiments:

Experiment	Brief description about the experiment	Number of
No.	Brief description about the experiment	slots
1.	Introduction to Neural networks training techniques.	2
2.	Designing the DNN model using transfer learning	1
	technique.	
3.	Implementation of GAN:	1
	Experiment on Autoencoders and Variational Autoencoders	
4.	Implementation of GAN:	2
	Experiments on Conditional GAN, Super-Resolution GAN,	
	CycleGAN	
5.	Implementation of RNN:	1
	Implementation of RNN & LSTM and Embeddings &	
	Word2vec	
6.	Experiments on Model Optimization Techniques: Hyper	1
	parameter tuning, Regularization and Optimization	
7.	Course Project	4

<u>BACK</u>

Prog	ram: Bachelor of Eng	ineering		
	rse Title: Natural Lar vork models	guage processing with Neural	Course Code: 23EC	CSE315
L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs	/week
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	hing Hrs: 40 hrs		Exam Duration: 3	hrs
		Unit –I		
1	Language Processir	ural Language Processing: Introng, Applications of Natural Lan ion, Word2vec objective function	guage Processing,	7 hrs
2	Dependency Parsi Grammar , Neural d	ng, Recurrent Neural Netwo ependency parsing, Recurrent Ne anishing Gradients, Fancy RNNs	rks: Dependency	8 hrs
		Unit –II		
3		n, Seq2Seq and Attention: Mation, Advanced Attention	chine Translation,	8 hrs
4	Transformer Netwo	rks , Coreference Resolution, N rks and CNNs, Tree Recursive Ne g , Advanced Architectures and N	ural Networks and	9 hrs
		Unit –III	,	
5	Reinforcement Lea	earning for Natural Langu rning for NLP, Semi-supervised Aodels, Multi-task Learning a ning:	Learning for NLP,	9 hrs
Text	Book			
1.	Processing, 2016.	Primer on Neural Network Mo	dels for Natural La	anguage
Refe	rences:			
	•	es H. Martin. Speech and Languag Ja Bengio, and Aaron Courville. D	• • •	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2	1, 2	Solve Any 2 out of 3
II	Q.No3, Q.No4	3,4,	Solve Any 2 out of 3
	Q.No5	5	Solve Any 1 out of 2

Networking

Prog	ram: Bachelor of E	ngineering		
Cour	se Title: DevOps		Course Code: 23ECSE31	L O
L-T-P	P: 1-0-2	Credits: 3	Contact Hrs: 5hrs/wee	k
ISA M	Marks: 80	ESA Marks: 20	Total Marks: 100	
Teac	hing Hrs: 20	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs	
		Unit –I		
	Introduction to	DevOps and Continuous	Delivery: Introducing	
1	DevOps, The Agile	e wheel of wheels, DevOps	and ITIL, Infrastructure	4hrs
	As A Code, Contin	uous Integration and Devel	opment.	
	Linux and Autom	nation: User Management,	Package Management,	
2	Networking, Shel	l Variable, Decision making	g, Shell test conditions,	4hrs
	Shell loops, Re-dir	ectors, Exit status.		
	AWS Cloud: Intro	duction to cloud computing	& AWS, Regions & AZ's,	
3	EC2, EBS, EFS, Au	to scaling, Load balancing &	& Route 53, VPC, Object	6hrs
5	storage(S3), IAM &	& Monitoring(Cloudwatch),	Database Services, AWS	0113
	Lambda & CLI			
	1	Unit –II		
	Version Control	with Git: SCM, Git brand	hing and merging, Git	
4	Overview, Creatin	ng pull request, Code Rev	iew, Merging changes,	4hrs
		l push code on GibHub / Bit		
	-	ation using Jenkins: Introd	•	
		first job, Notifications, CICD		_
5	plugin in Jenkins, Scheduling a job using cron tab, Scheduling a job			7hrs
	using Poll SCM, Distributed Architecture in Jenkins, Adding linux slave			
	to jenkins master			
	-	lanagement using Ansibl		
6		levelopment, Ad-Hoc c	· •	7hrs
		zation – Roles & Includes,	Inventories, Ansible for	
	AWS	11		
	Containara: Carta	Unit –III	le Virtual Machina	
		iners Concepts, Container \ n, Managing Container with		
7		n docker images, Docker Cor		6hrs
		vorking inside single docker		
8		oring using Prometheus and		
o		ring, Goals, Types of Contin		
		llation, Grafana installation,	•	
		Grafana, Adding customised	-	4 hrs
		Statana, Adding customised	uasinoualu ili Glalalid,	-+ 111.5

	Introduction to node exporter, Integrating node exporter for
	monitoring, Monitoring docker and containers
Text B	ooks:
1.	Joakim Verona, "Practical DevOps." Packt Publishing Ltd, Feb. 2016, ISBN: 9781785882876
2.	Jeff Geerling, "Ansible for DevOps: Server and configuration management for humans." Leanpub, 2015.
3.	John Ferguson, "Jenkins: The Definitive Guide" Smart Publisher: O'Reilly Media,
	Release Date: June 2016.
Refere	ence Books:
1.	Jennifer Davis, Ryn Daniels, "Effective DevOps, Building a Culture of Collaboration, Affinity, and Tooling at Scale", Publisher: O'Reilly Media, Release Date: June 2016.
2.	Gene Kim, Patrick Debois, John Willis, Jez Humble, "The DevOps
	Handbook: How to Create World-Class Speed, Reliability, and Security in
	Technology Organizations", IT Revolution Press, 2016.

<u>BACK</u>

 2 Database Join's in PowerCenter, Workhow Logic, Merging, Routing, and Sorting Data, Command Tasks, Debugging, Parameterization, Updating Database Tables, Mapplets, Mapping Design Workshop, Addendum. PowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process. Fault Handling, Introduction to 	Cour	rse Title: Data Integration	and Cloud Services	Course code: 21E	CSE332	
Teaching Hrs: Tutorial/Practical: 84 hrs Exam Duration: 3 hrs Unit - 1 Data Integration for Developers: Introduction to PowerCenter, Folders, Sources, and Targets, Design Objects, File Lookups, Relational Lookups, Database Joins in PowerCenter, Workflow Logic, Merging, Routing, and Sorting Data, Command Tasks, Debugging, Parameterization, Updating Database Tables, Mapplets, Mapping Design Workshop, Addendum. 20 hrs PowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Parformance Tuning Mapping Design, Memory Optimization, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. 20 hrs Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. 10 hrs 4 Designer, Cloud Mapping Designer — Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. 10 hrs	L-T-P	P: 0-0-3	Credits: 3	Contact Hrs: 6 hr	s/week	
Unit - 1 Data Integration for Developers: Introduction to PowerCenter, Folders, Sources, and Targets, Design Objects, File Lookups, Relational Lookups, Database Joins in PowerCenter, Workflow Logic, Merging, Routing, and Sorting Data, Command Tasks, Debugging, Parameterization, Updating Database Tables, Mapplets, Mapping Design Workshop, Addendum. 20 hrs PowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. 20 hrs Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. 10 hrs Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. 10 hrs	ISA N	Marks: 80	ESA Marks: 20	Total Marks: 100		
Data Integration for Developers: Introduction to PowerCenter, Folders, Sources, and Targets, Design Objects, File Lookups, Relational Lookups, Database Joins in PowerCenter, Workflow Logic, Merging, Routing, and Sorting Data, Command Tasks, Debugging, Parameterization, Updating Database Tables, Mapplets, Mapping Design Workshop, Addendum.20 hrsPowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning: Pipeline Partitioning.20 hrsCloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices.10 hrsCloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model.10 hrsText book: 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Maleward10 hrs	Теас	hing Hrs:	Tutorial/Practical: 84 hrs	Exam Duration:	3 hrs	
 Sources, and Targets, Design Objects, File Lookups, Relational Lookups, Database Joins in PowerCenter, Workflow Logic, Merging, Routing, and Sorting Data, Command Tasks, Debugging, Parameterization, Updating Database Tables, Mapplets, Mapping Design Workshop, Addendum. PowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 			Unit - I			
1Database Joins in PowerCenter, Workflow Logic, Merging, Routing, and Sorting Data, Command Tasks, Debugging, Parameterization, Updating Database Tables, Mapplets, Mapping Design Workshop, Addendum.20 hrsAPowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning: Pipeline Partitioning.20 hrs3Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices.10 hrs4Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model.10 hrs		Data Integration for Dev	velopers: Introduction to Powe	erCenter, Folders,		
 Sorting Data, Command Tasks, Debugging, Parameterization, Updating Database Tables, Mapplets, Mapping Design Workshop, Addendum. PowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Sources, and Targets, De	sign Objects, File Lookups, Re	lational Lookups,		
Database Tables, Mapplets, Mapping Design Workshop, Addendum. PowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Maleward	1	Database Joins in Power	Center, Workflow Logic, Mergi	ing, Routing, and	20 hrs	
 PowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Sorting Data, Command	Tasks, Debugging, Parameter	ization, Updating		
 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Database Tables, Mapple	ts, Mapping Design Workshop,	Addendum.		
 Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		PowerCenter Architect	ure and Transformations:	PowerCenter 10		
 Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Architecture, Parameter	Files, User-Defined and Adva	anced Functions,		
 Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Pivoting Data, Dynam	ic Lookups, Stored Proce	dure and SQL		
Command Command Performance Tuning Performance Tuning Mapping Design, Memory Memory Optimization, Performance Tuning: Performance Tuning: Pipeline Partitioning.20 hrs3Cloud Application Integration, Understand Massets, Adding Web Services to a Process: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices.10 hrs4Cloud Data Integration Services: Informatica Designer, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model.10 hrs4Learning Informatica PowerCenter 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar10 hrs	2	Transformations, Trouble	eshooting Methodology and	Error Handling,		
 Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Transaction Processing,	Transaction Control Transform	nation, Recovery,		
 Performance Tuning: Pipeline Partitioning. Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Command Line Prog	rams, Performance Tuning	g Methodology,	20 hrs	
 Cloud Application Integration Services: Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Performance Tuning	Mapping Design, Memory	y Optimization,		
 Integration, Understand the Basics: Process Designer, Working with Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Performance Tuning: Pipe	eline Partitioning.			
 Assets, Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		Cloud Application Integr	ration Services: Overview of O	Cloud Application		
Assets, Adding Web Services to a Process, Pault Handing, Infroduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices. 10 hrs Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. 10 hrs Text book: 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar	r	-	-			
Troubleshooting, Tips & Tricks, Best Practices. Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar	Э	_		-	10 hrs	
 Cloud Data Integration Services: Informatica Cloud Overview, Runtime Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		0	U	CDI Integration,		
 Environments and Connections, Synchronization Task, Cloud Mapping Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 						
 A Designer, Cloud Mapping Designer – Transformations, Mapping Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar 		-		-		
Parameters, Expression Macro and Dynamic Linking, Replication Task, Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar			· · ·			
Masking Task, Mass Ingestion Task, Task flows, Hierarchical Connectivity, Intelligent Structure Model. Text book: 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar	4				10 h	
Intelligent Structure Model. Text book: 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar				•	10 nrs	
Text book: 1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar						
1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar	Tevt		UI.			
Reference book:	1	 Data Mining Concepts Kamber, Jian Pei, Publish 	and Techniques, Third Editio	n, Jiawei Han, M	icheline	

Progra	Program: Bachelor of Engineering			
Cours	e Title: Multimedia Ne	tworks	Course Code:21ECSE31	1
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 3hrs/weel	(
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 40		Exam Duration: 3 hrs	
		Unit –I		
	Introduction to Mult	i media: Media and Data str	eam: Perception Media,	
1	Representation Mee	dia, Presentation Media,	Storage Media; Key	4 hrs
Ŧ	properties of Multimedia, Characterizing data streams and Continuous			41115
	Media Data Streams.			
	Graphics and Image	Data representation: Graph	nics / Image data types,	
	popular file formats,	color science, color models	in images, color models	
2	in video, Image ana	lysis: Color, Texture identif	ication, Edge detection	6 hrs
2	using sobel opera	tors, canny edge detec	tion method, Image	0 111 3
	segmentation: pixel	oriented, edge oriented, F	Region oriented, Image	
	recognition. Image sy	nthesis, Radon transforms.		
l	Fundamental concep	ts of Video and Audio: Type	es of video signal, digital	
3	video, Digitization	of audio, MIDI standa	rd, Quantization and	6 hrs
	transmission of audic			
	Unit –II			
	• •	techniques: Lossless compr	-	
		ble-Length Coding (VLC), Sh	-	
	0.	ptive Huffman Coding, Arit	0,	
4	JPEG, Lossy compression algorithms: Distortion Measures, The Rate-		6 hrs	
	Distortion Theory, Quantization, Uniform Scalar Quantization, Non-			
	uniform Scalar Quantization, Vector Quantization, Transform Coding,			
	Discrete Cosine Transform (DCT), Introduction, Continuous Wavelet			
	Transform, Discrete V		sion based on motion	
5	-	techniques: Video compres 1, H.263, MPEG -1. Bas		6 hrs
5	• •	п, п.205, IVIPEG -1. Das	ic audio compression	01115
	techniques Computer based	Animation: Basic concer	ots, specifications of	
6	animations, methods of controlling animation, display, transmission of			4 hrs
0	animation, VRML			4 111 5
		Unit –III		
	Optical storage mer	lia: Basic technology, vide	a disc. CDDA CDROM	
7	CDR/W, DVD	Basie teennology, vide		4 hrs

	Content Analysis: Simple and complex features: text recognition,	
8	similarity based search in image database, analysis of individual images,	4 hrs
	image sequences, applications.	

Text Books:

- 1. Ze-Nian Li & amp; Mark S.Drew, Jiangchuan Liu, "Fundamentals of Multimedia", Second Edition, Springer, 2014.
- 2. Ralf Steinmetz, Klara Narstedt, "Multimedia Fundamentals: Vol 1-Media Coding and Content Processing", 2nd Edition, Pearson Education / PHI, 2003.

Reference Books:

1. James E Shuman, "Multimedia in Action" 2nd Indian reprint 2008, Cengage learning.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
	Q.No7	7	Solve Any 1
	Q.No8	8	

Pro	gram: Bachelor of Engineering				
Cοι	Irse Title: Internet of Things		Course Code: 22EC	SE303	
L-T-	P: 3-0-0	Credits: 3 Contact Hrs: 3hrs/we		/week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Теа	Feaching Hrs: 40Exam Duration: 3		nrs		
Unit –I					
1	Introduction to Internet of Th	ings (IoT): Definition &	Characteristics of IoT,		
	Things in IoT, IoT protocols, Ic	oT functional blocks, co	ommunication models	04 hr	
	and APIs, IoT Levels.				
2	IoT Architecture: Enabling tech	nologies: Sensors, Zigb	ee, Bluetooth/BLE, IoT		
	ecosystem, Data Link protocols	: IEEE 802.15.4e, IEEE 8	802.11.ah, DASH7, Low	04 hr	
	Power Wide Area Network (LP	WAN), LTE-m, NB-IoT, L	.oRa, Z-Wave.		
3	Network protocols: Routing F	Protocol for Low-Powe	r and Lossy Networks		
	(RPL), cognitive RPL (CORPL), (Channel-Aware Routing	Protocol (CARP), Low	04 hr	
	power Wireless Personal Area	Networks (LoWPAN), IF	PV6, 6LoWPAN, Route-	••••	
	Over & Mesh-Under technique	25.			
		Unit –II			
4	Application and Security protocols: Message Queue Telemetry Transport				
	(MQTT), MQTT for Sensor N	QTT), MQTT for Sensor Networks, Secure MQTT, Advanced Message			
	Queuing Protocol (AMQP), Co	onstrained Application	Protocol (CoAP), OPC	03 hr	
	UA, 6LoWPAN), Routing Protoc	col for Low-Power and	Lossy Networks (RPL),		
	TLS/DTLS.				
5	Design Methodology and	Identity Managemen	t Solutions for IoT		
	Platforms: IoT Design Method	ology, Case Study on Ic	T System for Weather		
	Monitoring etc., Basic building	g blocks of an IoT dev	vice, Raspberry Pi, IoT	05 hr	
	Operating Systems: Contiki, RI	OT, ARM Mbed OS. Io	T IAM infrastructure –		
	Authorization with Publish / Su	ubscribe schemes			
6	Programming with Raspberry	Pi & WiFi controllers	(CC3200/ESP8266) &		
	6LoWPAN Controller (CC2650)	: XML, JSON, SOAP and	REST-based approach,	04 hr	
	WebSocket protocol.				
		Unit –III			
7	IoT prototyping: Business mo	dels, example applicat	ions: Case studies on		
	Home automation, Smart Citie			06 hr	
	Retail with emphasis on data a	· · · ·			
	of AI/ML in IoT (AloT).	· · ·	. ,		

Text Books:

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons 2012.
- 2. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014
- 3. Drew Van Duren, Brian Russell "Practical Internet of Things Security" Second Edition, Packt Publishing November 2018.

References

- 1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.
- 2. Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", Wiley 2009.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	mstructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7, 8	Solve Any 1

<u>BACK</u>

Prog	ram: Bachelor of Eng	ineering			
Cour	se Title: Block chain a	and Distributed Ledgers	Course Code: 23ECSE	316	
L-T-P	2: 2-0-1	Credits: 3	Contact Hrs: 2 hrs/w	veek	
ISA N	Marks: 100	ESA Marks: NA	Total Marks: 100		
Teaching Hrs: 30Tutorial/Practical: 28 hrsExam Duration: NA					
Unit –I					
	Introduction: Over	view of block chain, Digital M	Money to Distributed		
	Ledgers, Design Prir	nitives: Protocols, Security, Con	sensus, Types of block		
1	chain, block chain	platforms, Block chain Archited	ture, Block chain Use	6hrs	
	Cases: Finance, E-C	Governance, Supply chain mar	nagement, Healthcare		
	management and cy	/ber security.			
_	Cryptography Basic	s: Introduction to cryptograph	ny, Public key crypto:		
2	Introduction, RSA, P	ublic key infrastructure, Hash Fu	unctions: Properties of	6hrs	
	Hash Functions, SHA	A, Digital signature Schemes, Me	rkle trees.		
Unit –II					
	Consensus Mechan	isms and Mining: Consensus in	Distributed Systems,		
_	Consensus mechanisms in Permission less blockchain: Proof of Work, Proof				
3	of Stake (POS), Proof of Activity, Delegated POS, Proof of Elapsed Time.			6hrs	
	Consensus mechar	isms in Permissioned Blockc	hain: RAFT, Practical		
	Byzantine Fault Tole	rance (PBFT), Scalability of cons	ensus algorithms.		
	Ethereum and Sma	rt Contracts: Ethereum transac	tions, accounts, smart		
,		ntract development, Solidity b		Char	
4	distributed storage	and IPFS, Ethereum scaling, App	olications of Ethereum	6hrs	
	Smart contracts: Tol	kens and Token Standards, Fung	ible and Non-Fungible		
	Tokens, crowd fundi				
Unit –III					
	Enterprise Blockch	ain Platforms: Hyperledger	Fabric: Introduction,		
5	Architecture, Identi	ty, Membership and Peer Mana	gement, Chain codes.	6hrs	
_	Corda: Principal Fea	tures, Architecture, CorDapp. C	onsensus Mechanisms		
	in Hyperledger Fabr	ic and Corda.			

Reference Books:

- 1. Imran Bashir "Mastering Blockchain ", 3st Edition, Packt Media, 2020.
- 2. Melanie Swan, "Blockchain: Blueprint for New Economy", 1st Edition, O'Reilly Media, 2014.
- 3. ArshdeepBhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", 1st Edition, VPT, January 31, 2017.

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
Mid Term	25
Exercises	25
Project	50
Total	100

Laboratory Plan List of Exercises

Expt./	Brief description about the experiment/job	No. of Lab.
No.		Slots
1.	Overview and Demonstration of Ethereum smart contracts	1
2.	Solidity programming- Data types, control structures and functions	1
3.	Deploying contract using external blockchain using Metamask/Myetherwallet	1
4.	Creating custom Ethereum blockchain using Geth	1
5.	Connecting to Geth node using Web3	1
6.	Create distributed storage using IPFS.	1
7.	Connect IPFS to Ethereum and Hyperledger Fabric	1
8.	Course Project	7

Systems Engineering

Progr	am: Bachelor of Enginee	ring		
Cours	e Title: Parallel Computi	ng	Course Code: 17ECSE3	07
L-T-P:	-P: 3-0-0 Credits: 3 Contact Hrs: 03 hrs/wee		eek	
ISA M	larks: 50	ESA Marks: 50 Total Marks: 100		
Teach	ing Hrs: 40		Exam Duration: 03 hrs	
		Unit –I		
Introduction to Parallel Computing & Parallel Programming Platforms:				
	Motivating Parallelism,	Scope of Parallel Computir	ng, Implicit Parallelism:	
1	Trends in Microprocess	or Architectures, Limitatic	ons of Memory System	8 hrs
1	Performance, Dichotor	my of Parallel Computin	g Platforms, Physical	8 nrs
	Organization of Paralle	el Platforms, Communica	tion Costs in Parallel	
	Machines.			
	Principles of Parallel A	Algorithm Design: Prelimi	naries, Decomposition	
2	Techniques, Character	ristics of Tasks and Ir	nteractions, Mapping	8 hrs
2	Techniques for Load	Balancing, Methods for (Containing Interaction	0 1115
	Overheads, Parallel Algorithm Models.			
Unit –II				
3	Analytical Modeling of Parallel Programs: Sources of Overhead in			
	Parallel Programs, Performance metrics for parallel systems, The effect			
	of Granularity on performance, Scalability of Parallel Systems, Minimum			8 hrs
	execution time and min	nimum cost optimal execu	ution time, Asymptotic	
	analysis of Parallel prog	rams, Other Scalability Me	etrics.	
4	Programming Using the Message Passing Paradigm: Principles of			
	Message – Passing Pro	ogramming, The Building	Blocks, and MPI: The	
	Message passing In	terface, Overlapping (Communication with	8 hrs
	Computation, Collective	e Communication and Cor	mputation Operations,	
	Groups & Communicators.			
	1	Unit –III		
	Pthreads and Synchronization: Thread Basics, POSIX Thread API,			
5		tives in Pthreads, Con	-	4 hrs
•	Synchronization Attributes, Thread Cancellation, Composite			
	Synchronization Constr			
	• • •	ogramming model, Specif		
6		ucts in opn MP, Data hand		4 hrs
	•	nvironment variables in Op	penMP, Explicit Thread	
	versus OpenMP based	programming.		

Text Books:

1. Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta, Introduction to Parallel Computing, Second Edition, Pearson India, 2013

Reference Books:

1. Michael Quinn, Parallel Computing Theory and Practice, Tata McGraw Hill, 2003

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
11	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
111	Q.No7	5	Solve Any 1
	Q.No8	5	,

Scheme for End Semester Assessment (ESA)

Progra	m: Bachelor of Enginee	ring		
Course	Title: Quantum Compu	Iting	Course Code: 17ECSE306	
L-T-P: 3	T-P: 3-0-0 Credits: 3 Contact Hrs: 3hrs/week			
ISA Ma	SA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teaching Hrs: 40 Exam Duration: 3hrs				
-		Unit –I		
-	Introduction and Ba	ckground: Overview, Con	nputers and the Strong	
1	Church–Turing Thesis,	The Circuit Model of Comp	outation, A Linear Algebra	6 hrs
	Formulation of the Ci	rcuit Model, Reversible Co	mputation, A Preview of	
	Quantum Physics, Qua	intum Physics and Computation	ation	
	Linear Algebra and th	ne Dirac Notation: The Di	rac Notation and Hilbert	
2	Spaces, Dual Vectors,	, Operators, The Spectral	Theorem, Functions of	6 hrs
	Operators, Tensor Pro	ducts, The Schmidt Decom	position Theorem, Some	
	Comments on the Dira	ac Notation		
3	Introduction to Quantum Toolbox in Python: Installation, Basics and			4 hrs
	Quantum mechanics			
		Unit –II		
	Qubits and the Framework of Quantum Mechanics: The State of a			
4	Quantum System, Time-Evolution of a Closed System, Composite Systems,			
	Measurement, Mixed States and General Quantum Operations, Mixed			
	States, Partial Trace, G	eneral Quantum Operatior	าร	
	A Quantum Model	of Computation: The C	Quantum Circuit Model,	
5	Quantum Gates, 1-Q	ubit Gates, Controlled-U	Gates, Universal Sets of	6 hrs
		ciency of Approximating	•	
		ements with Quantum Circ		
6	-	Exploring Python for Sol	ving Problems / Projects	4 hrs
	using Quantum Comp			
	Unit –III			
_	Introductory Quantu	um Algorithms: Probabi	ilistic Versus Quantum	
7	Algorithms, Phase Kic	k-back, The Deutsch Algor	ithm, The Deutsch–Jozsa	4 hrs
	Algorithm, Simon's Alg	gorithm		
8	Case Studies and Projects done during the course : Image processing, Data		4 hrs	
	Sciences, Machine Lea	rning, Networking		

Text Books

- 1. Phillip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to Quantum Computing ", Oxford University, Press, 2007
- 2. User Guide Quantum Toolbox in Python, Release 4.2.0 Qutip.org

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
	Q.No7	7	Solve Any 1
	Q.No8	8	

<u>BACK</u>

Prog	ram: Bachelor of Engineer	ring		
Course Title: Embedded Intelligent Systems Course code: 23E				CSE302
L-T-P	L-T-P: 1-0-2 Credits: 3 Contact Hrs: 5hr		s/week	
ISA I	SA Marks: 80 ESA Marks: 20 Total Marks: 100			
Teaching Hrs.: 16 hrs. Tutorial/Practical: 56 hrs Exam Duration: 3		3 hrs.		
	Basics of embedded syst	ems: Linux Application Progr	amming, System	
1	V IPC, Linux Kernel Interr	als and Architecture, Kernel (Core, Linux Device	3 hrs
-	Driver Programming, Inte	errupts & Timers, Sample shel	l script,	5 1115
	application program, driv	ver source build and execute.		
	Heterogeneous computi	ng: Basics of heterogeneous of	omputing with	
	various hardware archite	ctures designed for specific ty	vpe of tasks,	
2	Advanced heterogeneou	s computing with a. Introduct	ion to Parallel	
	programming b. GPU programming (OpenCL) c. Open standards for			3 hrs
	heterogeneous computing (Openvx), Basic OpenCL examples - Coding,			
	compilation and execution			
	ML Frameworks lab with	the target device: Caffe, Ten	sorFlow, TF	
2	-	meworks & architecture, Mod		2
3		bility, supported layers, advar	-	3 hrs
	-	of these frameworks, Android		
	overview, Full stack compilation and execution on embedded device			
	•	d Optimization: Significance o	,	
4		eight sharing, Distillation, Var	·	3hrs
	networks and design considerations to choose a particular pre-trained model, Federated Learning, Flexible Inferencing			
F	-	bid Architecture ,Linux Kernel		2 hrs
5		Runtime, Dalvik Application	framework ,	z nrs
	Applications, IPC			
Text	Books			
1	. Linux System Programn	ning, by Robert Love, Copyrigh	nt © 2007 O'Reilly N	vledia

2. Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad Mistry, David R. Kaeli, Lee Howes, Benedict Gaster, Publisher: Morgan Kaufmann

Reference Books:

- 1. Deep Learning, MIT Press book ,Goodfellow, Bengio, and Courville's
- 2. Beginning Android , by Wei-Meng Lee , Publisher: Wrox , O'Reilly Media

SI.No.	Experiments	Number of slots
1.	Linux Application Programming.	2
2	Basic OpenCL examples, High level language to assembly	2
2.	language translation, optimization and power management.	
3.	Deep Learning Frameworks and optimization techniques.	2
	Implementation of basic and DNN architecture for Android	3
4.	framework, Push ML/DL model on Android device and run	
	application.	
5.	Course project	5

Students Assessment through ISA (80%) + ESA (20%)

In Semester	Assessment	Weightage in			
Assessment		Marks			
(80%)	Exercise on Basics of embedded systems	10			
	Exercise on Heterogeneous computing				
	Exercise on ML Frameworks				
	Exercise on Android Anatomy				
	Course Project	40			
End Semester	Experiment/course project on Android device	20			
Assessment	implementing ML/DL model				
(20%)	Total	100			
		PACK			

<u>BACK</u>

Prog	ram: Bachelor of Engineeri	ng			
Cours	Course Title: The ARM Architecture Coursecode:19ECSE				
L-T-P	: 2-1-0	Credits: 3	Contact Hrs: 4 hrs/v	/week	
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 30 Tutorial/Practical: 28 hrs Exam Duration: 3 hr				s	
		Unit –I			
	ARM Embedded System	s and Processor Fundamenta	als: The RISC Design		
	Philosophy , The ARM [Design Philosophy, Embeddeo	d System Hardware,		
1	Embedded System Softw	vare, Registers, Current Prog	ram Status Register,	06 hrs	
	Pipeline, Exceptions, Inte	errupts, and the Vector Tab	le, Core Extensions,		
	Architecture Revisions, A	RM Processor Families			
	Introduction to the ARM	Instruction Set & Assembly	Programming: Data		
	Processing Instructions, Branch Instructions, Load-Store Instructions,				
2	Software Interrupt Instruction, Program Status Register Instructions, Loading				
	Constants, ARMv5E Extensions, Conditional Execution, Thumb instruction				
	set.				
		Unit –II			
	Efficient C Programming:	Overview of C Compilers and (Optimization, Basic C		
3	Data Types, C Looping Str	uctures, Register Allocation, Fu	unction Calls, Pointer	06 hrs	
	Aliasing, Structure Arrangement, Bit-fields,				
	Unaligned Data and Endia	nness, Division.			
	Writing and Optimizing	ARM Assembly Code: Write	ing Assembly Code,		
4	Profiling and Cycle Counting, Instruction Scheduling, Register Allocation,			06 hrs	
	Conditional Execution,	Looping Constructs, Bit Ma	nipulation, Efficient	00 1115	
	Switches, Handling Unalig	ned Data.			
Unit –III					
	Introduction to LPC-2148	controller: Input output Ports	, Pin select registers,		
5	Input output select reg	gisters, direction control and	d control registers,	03 hrs	
	Introduction to interfacing	g standards			
6	-	terfacing to peripherals like LE	D, LCD, Seven	03 hrs	
	segments, Motors, Conve	rters, Keypad.		50 1115	

Text Books

1. Andrew N.Sloss et al, ARM System Developer's Guide- Designing and Optimizing System Software

Reference Books:

- 1. Marilyn Wolf, Computers as Components: Principles of embedded computing system design, Morgan Ka, 2012
- 2. Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000

Tutorial Plan

Expt./	assignments/experiment	No. of Lab.
Job No.		Slots per batch
		(estimate)
1	ALP on arithmetic instructions set	01
2	ALP on logical instructions set	01
3	ALP on loop and branch instructions	01
4	Interface LED and Seven segments to ARM for displaying message.	01
5	Interface LCD to ARM for displaying message.	01
6	Interface Keypad to read the characters	01
7	Rotate DC and stepper motor for variable speed and direction	01
8	Interface DAC to ARM controller	01

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	Numbers	
1	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
111	Q.No7, 8	5	Solve Any 1 out of 2

Progra	am: Bachelor of Engineer	ing			
	e Title: Robotic Proce opment	ss Automation Design &	Course Code: 20EC	SE301	
L-T-P:	L-T-P:3-0-0 Credits: 3 Contact Hrs: 3hrs/v				
ISA M	A Marks: 50 ESA Marks: 50 Total Marks: 100				
Teach	ing Hrs: 40		Exam Duration: 3 h	rs	
		Unit –I			
	Programming Basics	& Recap: Programming (Concepts Basics -		
	Understanding the app	ication - Basic Web Concepts	- Protocols - Email		
1	Clients Data Structure	s - Data Tables - Algorithms -	Software Processes	6 hrs	
1	- Software Design - Scrip	tingNet FrameworkNet F	undamentals - XML	0 111 3	
	- Control structures an	d functions - XML - HTML -	CSS - Variables &		
	Arguments.				
	Rpa Concepts: RPA Basi	cs - History of Automation - V	Vhat is RPA - RPA vs		
	Automation - Processes	& Flowcharts - Programming	Constructs in RPA -		
	What Processes can be Automated - Types of Bots - Workloads which can				
2	be automated - RPA Advanced Concepts - Standardization of processes -				
Z	RPA Developemt methodologies - Difference from SDLC - Robotic control				
	flow architecture - RPA business case - RPA Team - Proccess Design				
	Document/Solution Design Document - Industries best suited for RPA -				
Risks & Challenges with RPA - RPA and emerging ecosystem.					
		Unit –II			
	-	& Basics: Introduction to RI			
		Ianaging Variables - Naming			
		ic Value Variables - Text Varia			
		ables - Array Variables - Date			
		Managing Arguments - Nam	-		
	-	Using Arguments - About Imp			
3		paces- Control Flow - Contro		8 hrs	
		Loops - Advanced Control F	·		
		ntrol Flow - Control Flow Act	-		
		vity - The Do While Activity -			
	-	hile Activity - The For Each	•		
		ation - Data Manipulation Ir			
		d Tables - Text Manipulation -	Data Manipulation		
	- Gathering and Assemb	oling Data			

4	Advanced Automation Concepts And Techniques: Recording and Advanced UI Interaction - Recording Introduction - Basic and Desktop Recording - Web Recording - Input/Output Methods - Screen Scraping - Data Scraping - Scraping advanced techniques - Selectors - Selectors - Defining and Assessing Selectors - Customization - Debugging - Dynamic Selectors - Partial Selectors - RPA Challenge - Image, Text & Advanced Citrix Automation - Introduction to Image & Text Automation - Image based automation - Keyboard based automation - Information Retrieval	8 hrs
	- Advanced Citrix Automation challenges - Best Practices - Using tab for Images - Starting Apps - Excel Data Tables & PDF - Data Tables in RPA - Excel and Data Table basics - Data Manipulation in excel - Extracting Data from PDF - Extracting a single piece of data - Anchors - Using anchors in PDF.	
	Unit –III	
5	Email Automation & Exceptional Handling : Email Automation - Email Automation - Incoming Email automation - Sending Email automation - Debugging and Exception Handling - Debugging Tools - Strategies for solving issues - Catching errors.	8 hrs
Text B	ooks:	
1.	Alok Mani Tripathi, Learning Robotic Process Automation, Publisher Publishing Release Date: March 2018 ISBN: 9781788470940	: Packt
Refere	ence Books:	
1.	Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Livingston (Author), Introduction to Robotic Process Automation: a Institute of Robotic Process Automation.	
2.	Richard Murdoch, Robotic Process Automation: Guide To Building Se Robots, Automate Repetitive Tasks & Become An RPA Consultant	oftware
3.	Srikanth Merianda, Robotic Process Automation Tools, Process Automat their benefits: Understanding RPA and Intelligent Automation	ion and
4.	https://www.uipath.com/rpa/robotic-process-automation	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	mstructions
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
ш	Q.No7	5	Solve Any 1
111	Q.No8	5	Solve Ally I

Semester – VII

Prog	ram: Bachelor of Engi	neering	Semester - VII			
Cour	Course Title: Big Data and Analytics Course Code: 17ECSC40			1		
L-T-P	L-T-P: 2-0-1 Credits: 3 Contact Hours: 4 hrs/W		eek			
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100			
Teac	Teaching Hrs: 30 hrsTutorial/Practical: 28 hrsExam Duration: 3 hrs					
		Unit –I				
1		ew of Big data, Big Data Charact cs, Data Analytics Life Cycle.	teristics, Different Types	4 hrs		
2		isters, File Systems and Distribut n, Combining Sharding and Repl Storage Devices.	•	4 hrs		
3	3 No SQL Database : Document-oriented, Column-oriented, Graph-based, MongoDB.					
Unit – II						
4	Big Data Processing: Parallel Data Processing, Distributed Data Processing,					
	Hadoop, Map Reduce, Examples on MapReduce, Spark.					
	Stream Processing:Introduction to Stream Processing-Batch Versus Stream					
	•	s of Stream Processing ; Scalin		6 hrs		
5	Distributed Stream Processing; Stream-Processing Model- Sources and Sinks,					
	Immutable Streams Defined from One Another, Transformations and					
	Aggregations, Windo	w Aggregations, Stateless and S	tateful Processing.			
	Dia Doto Archusia	Unit – III	oto Tupos Dupring Dig			
		Pig- Introduction, Pig Primitive D				
6		of Pig – HDFS Commands - Rela		3 hrs		
0	Function - Complex Data Types - Piggy Bank - User-Defined Functions -					
	Parameter Substitution - Diagnostic Operator - Word Count Example using Pig - Pig at Yahoo! - Pig Versus Hive					
	<u> </u>		Architecture, Hive Data			
7	Big Data Visualization :Hive – Introduction, Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL), RCFile Implementation,					
		on (UDF). Serialization and Deser	•			

Text Books:

- 1. Thomas Erl, WajidKhattak, and Paul Buhler, Big Data Fundamentals Concepts, Drivers & Techniques, Prentice Hall, 2015.
- 2. Seema Acharya, SubhashiniChellappan, Big Data and Analytics, Wiley India Pvt Ltd 2014.
- 3. Gerard Maas and François Garillot, Stream Processing with Apache Spark Mastering Structured Streaming and Spark Streaming, O'REILLY, 2019

Reference Books:

- 1. Frank J Ohlhorst, Big Data and Analytics: Turning Big Data into Big Money, Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, Elsevier, 2007.

Credit: 1	Big Data and Analytics Lab					
	Preamble:					
	Data is created constantly, and at an ever-increasing rate. Mobile phones,					
	social media, imaging technologies to determine a medical diagnosis-all					
	these and more create new data, and that must be stored somewhere for some					
	purpose. Devices and sensors automatically generate diagnostic information					
	that needs to be stored and processed in real-time. Merely keeping up with					
	this huge influx of data is difficult, but substantially more challenging is					
	analyzing vast amounts of it, especially when it does not conform to traditional					
	notions of data structure, to identify meaningful patterns and extract useful					
	information. These challenges of the data deluge present the opportunity to					
	transform business, government, science, and everyday life.					
	Objective: The student should be able to use Big Data and Analytics					
	Frameworks and tools for handling, processing, and analyzing huge datasets.					
	Team size: Group of 3- 4					
	Type: Each batch will work for one distinct application area					

SI.	Experiments	СО	Blooms	Timeline	PI	Hrs	Marks
No.			level	wrt COE	code		
1.	 Hadoop Installation Assignment of the following application areas to each batch: Financial Data Analysis Market-Basket Analysis Telecommunication Industry Health Care Agriculture Public Security Bio-informatics 	CO1	L3	1 st &2 nd week	1.4.1	4	Nil
2.	Others Problem Identification (10 M) a) Learning the domain (2M) b) Assessment of resources available(2M): i) Data ii) People iii) Technology iv) Time c) Framing the Problem (Identifying Issue to be addressed) (2M) d) Developing Initial Hypothesis (2M) Identifying potential Data sources (2M)	CO1	L3	3 rd Week	2.3.1	2	10
3.	Data/File handling on DFS through NoSQL, Sharding, and Replication	CO2	L3	4 th Week	2.3.1	4	Nil
4.	 Data Preparation: (10M) a) Preparing the Analytic Sandbox (2M) b) Performing ETLT (2M) c) Data Conditioning (3M) Data Visualization (3M) 	CO2	L3	5 th & 6 th Week	1.4.3	4	10

0	KLE Technological
KLE TECH	University Creating Value, Leveraging Knowledge

5.	Design and Model Selection	CO2	L3	7 th & 8 th	2.3.1	4	10
5.				Week			
	Implementation	CO3	L3	9 th ,	5.3.1	6	10
6.				10 th &			
0.				11 th			
				Week			
7.	Presentation and Report	CO4	L3	12 th	10.1.2	2	10
/.				Week			
	Total						50

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3 1, 2, 3 Solve Any		Solve Any 2
II	II Q.No4, Q.No5, Q.No6		Solve Any 2
Q.No7 6		Solve Any 1	
	Q.No8	7	Solve Any I

Prog	Program: Bachelor of Engineering Semester - VII			
Cou	Course Title: Information Security Course Code: 20ECSC402			2
L-T-F	L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/week			
ISA I	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Теас	hing Hrs: 30 hrs	Tutorial/Practical: 28 hrs	Exam Duration: 3 hrs	
		Unit –I		
	Introduction: Introduction, OSI Security architecture, Secure design principles,			
1	A model for network sec	curity, Classic Crypto: Substi	tution and Transposition	6 hrs
	ciphers, Taxonomy of Cry	ptography and Cryptanalysis	5.	
	Cryptographic Algorithm	ns: Symmetric Key Crypto:	Stream ciphers, Feistel	
2	Cipher, Block Ciphers-AE	S, DES, IDEA, Block cipher	modes, Asymmetric Key	6 hrs
2	Crypto: Knapsack, Diffi	e-Hellman, Elgamal crypt	osystem, Elliptic Curve	OIIIS
	Cryptography.			
		Unit –II		
	Key management and Us	ser authentication:Key man	agement: Symmetric key	
3	distribution, Distribution	of public keys, Kerberos, Sy	mmetric key agreement,	6 hrs
3	Public key distribution. L	Iser authentication: Overvie	w, Passwords, Challenge	oms
response, Zero knowledge proof, Password cracking, Biometrics.				
	Network access control and Cloud Security: Network access control:			
	Overview, Network acce	ess enforcement methods,	Access Control Matrix,	
4	Multilevel Security Mode	ls, Multilateral Security, Fire	walls, Intrusion detection	6 hrs
	system, Cloud Security:	Cloud Security risks and	countermeasures, data	
	protection in cloud, cloud security as a service.			
		Unit –III		
5 Application and Transport Security Protocols: Introduction, Pretty Good			3 hrs	
5	Privacy and S/MIME, Sec	ure Socket Layer, Transport I	ayer Security, SSH.	5 11 5
	Network and Wireless	Security Protocols: IPSec	overview, Encapsulating	
6	security payload, combin	ing security associations, Int	ernet key exchange, GSM	3 hrs
	Security, IEEE 802.11 Wir	eless LAN Security.		
Text	Book			
1	 William Stallings, Crypt 	ography and Network Secu	rity Principles and Practice	es, 8th
	Edition, Pearson, 2020			
2	Mark Stamp, "Informat	ion Security: Principles and	Practices", 3 rd Edition, John	ı Wiley
	and Sons, 2021.			
Refe	rences			
1	I. Jonathan Katz and Yel	nuda Lindell, "Introduction	to Modern Cryptography	/", 3rd
	edition, CRC Press, 2020	Э.		
2	2. Behrouz A. Forouzan,	"Cryptography and Netwo	ork Security", 6th Editior	n, Tata
	McGraw-Hill, 2015.			

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
ISA 1	15
ISA 2	15
Project/ Certification	20
Total	50

Laboratory Plan

Expt./Job	Brief description about the experiment/job	No. of Lab. Slots	
No.		(each lab 2	
		hours)	
8.	Demo and practice on Crypto Library	2	
9.	Implementation of symmetric key algorithm	2	
10.	10. Implementation of Asymmetric key algorithm and Hash		
	functions		
11.	11. Course project		
	Total number of hours14*2=28		

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
111	Q.No7	5	Solve Any 1
	Q.No8	6	Solve Ally I

Program: Bachelor of Engineering		Semester - VII
Course Title: Senior Design	Course Code: 20ECSW401	
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: Tutorial/Practical: 42 hrs		Exam Duration: 3 hrs

Seventh semester senior design project theme: Usage of Design Principles in building the solution.

SDP aims to design and develop a solution using software design principles - design patterns (creational, behavioral & structural),

User experience (UX) design and API (application programming interface) that are generally followed in industries.

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing SDN (Software Defined Network) SNA(Social Network Analysis) 	 Data Analytics Data Processing: Image and video processing Computer Vision and Graphics NLP(Natural Language Processing) 	 Parallel Computing HPC (High Performance Computing) Parallel system design

Project Domains:

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation
Review-1	Literature Survey, Problem Analysis and Problem formulation
Review-2	Requirements, Design, design principles adopted in modules/components and Algorithms.
Review-3	Implementation and Testing.

Scheme for End Semester Assessment (ESA)

SI. No.	Expectation	Marks
1	Write up	05
	1. Problem Statement and Objectives.	
	2. System design with brief description.	
	3. Concluding remarks.	
2	Presentation: Prepare minimum of 15-18 slides of presentation with consultation of your respective guides.	05
3	Demo (Complete execution of the project with results) and Viva voce.	30
4.	Project Report.	10

Prog	Program: Bachelor of Engineering Semester - VII			
Cour	Course Title: CIPE Course Code: 15EH		SA401	
L-T-P	-T-P : Audit Credits: Audit Contact Hrs: 2hrs/we		veek	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	hing Hrs: 32		Exam Duration: 3 h	rs
		Unit – I		
 Features of Indian Constitution: Features of Indian Constitution, Preamble to the constitution of India, Fundamental rights under Part III – details of Exercise of rights, Limitations & Important cases. Berubari Union and Exchange of Enclaves, KesavanandBharati vs. UOI, Maneka Gandhi vs. UOI, Air IndiaLtd. vs. NargeesMeerza, T.M.A. Pai Foundation vs. St. of Karnataka, M.C. Mehta vs. UOI etc. 			4 hrs	
2	 Relevance of Directive principles of State Policy: Relevance of Directive principles of State Policy under Part IV, Fundamental duties & their significance. Sarla Mudgal v. UOI. 			3 hrs
3	 Union: Union – President, Vice President, Union Council of Ministers, Prime Minister, Parliament & the Supreme Court of India. 			4 hrs
 4 State:State – Governors, State Council of Ministers, Chief Minister, State 4 Legislature and Judiciary. 		2 hrs		
 Constitutional Provisions for Scheduled Castes & Tribes: Constitutional Provisions for Scheduled Castes & Tribes, Women & Children & Backward classes, Emergency Provisions. 		2 hrs		
6	6 Electoral process: Electoral process, Amendment procedure, 42nd, 44th and 86th Constitutional amendments.			2 hrs
	Unit – II			
 Scope & Aims of Engineering Ethics: Scope & Aims of Engineering Ethics: Meaning and purpose of Engineering Ethics, Responsibility of Engineers, Impediments to responsibility, Honesty, Integrity and reliability, risks, safety & liability in engineering. Bhopal Gas Tragedy, Titanic case. 			5 hrs	
8	Intellectual Property Rights: Intellectual Property Rights (IPRs)- Patents, Copyright and Designs		3 hrs	
9	Ethical perspectives of professional bodies: Ethical perspectives of professional bodies- IEEE, ASME, NSPE and ABET, ASCE etc.		3 hrs	

	Unit – III	
10	Effects of human activities on environment: Effects of human activities on environment - Agriculture, Housing, Industry, Mining, and Transportation activities, Environmental Impact Assessment, Sustainability and Sustainable Development.	2 hrs
11	Environmental Protection: Environmental Protection – Constitutional Provisions and Environmental Laws in India.	2 hrs

Text Books (List of books as mentioned in the approved syllabus)

- 1. Dr. J. N. Pandey, "Constitutional Law of India", Central Law Agency, 2005
- 2. Dr. M.K. Bhandari, "Law relating to Intellectual Property Rights", Central Law Publicaitons, Allahabad, 2010.
- 3. Charles E. Harris and others, "Engineering Ethics: Concepts and Cases", Thomson Wadsworth, 2003

References:

- 1. Durga Das Basu, "Introduction to the Constitution of India", Prentice-hall EEE, 2001
- 2. Mike Martin and Ronald Schinzinger, "Ethics in Engineering", Tata McGraw-Hill Publications.

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
Minor Exam-1	20
Minor Exam-2	20
Assignment	10
Total	50

Progra	Program: Bachelor of Engineering Semester - VI			
Course Title: Industry Readiness & Leadership			Course Code: 23EHSA403	
Skills(Skills(Audit)		Course Code: 23EHS	A403
L-T-P:	: 0.5-0-0 Credits: - Contact Hrs: 1hr/week			ek
ISA M	arks: 100	ESA Marks: NA	Total Marks: 100	
Teach	ing Hrs: 16 hrs		Exam Duration: NA	
		Unit –I		
	Written Communicatio	n: Successful Job Applicatio	ns, Résumé Writing,	
1	Emails, Letters, Busines	s Communication, Essay, an	d Paragraph Writing	6 hrs
	for Recruitment Tests			
2	Interview Handling S	kills: Understanding Inter	viewer Psychology,	4 hrs
2	Common Questions in HR Interviews, Grooming, Interview Etiquette			
	Lateral & Creative Thinking: Lateral Thinking by Edward de Bono,			
3	Fractionation and Brain Storming, Mind Maps, Creativity Enhancement			
	through Activities			
	Team Building & Lea	adership Skills: Communi	cation in a Team,	
4	Leadership Styles, Playing a Team member, Belbin's team roles, Ethics,			
	Effective Leadership Stra	ategies		
Text B	Books:			
	NA			
Refere	ence Books:			
		riting, Laxmi Publications	_	
		ateral Thinking – A Textbool	,, 0	ו UK
	,	White – The Elements of Sty	•	
	 John Maxwell – Th Leadership 	e 17 Essential Qualities of	a leam Player, Harpe	erCollins
	•	onds and You're Hired! – Pe	nguin Books	
	2			

Program: Bachelor of Engineering Semester - VI			Semester - VI			
Cour	Course Title: Professional Aptitude and Logical Reasoning (AUDIT) Course Code: 231		EHSA402			
L-T-F	P: 3-0-0	Credits: -	Contact Hrs: 3h	rs/week		
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 10	0		
Теас	ching Hrs: 40		Exam Duration:	3 hrs		
	Unit –I	- Arithmetical Reasoning and Analyti	cal Thinking			
1	1 Arithmetical Reasoning		10hrs			
2	2 Analytical Thinking			4 hrs		
3 Syllogistic Logic				3hrs		
		Unit –II				
4	Verbal Logic			4 hrs		
5	Non-Verbal Logic			4 hrs		
	·	Unit –III- Lateral Thinking				
6	Lateral Thinking			4 hrs		
Text	Books:					
1.	A Modern Approa	ch to Verbal and Non – Verbal Reaso	ning – R. S. Aggarv	val, Sultan		
	Chand and Sons, New Delhi					
2.	Quantitative Aptitu	ude – R. S. Aggarwal, Sultan Chand an	d Sons, New Delhi			
Refe	erence Books:					
1.	1. Verbal and Non – Verbal Reasoning – Dr. Ravi Chopra, MacMillan India					
2.	2. Lateral Thinking – Dr. Edward De Bono, Penguin Books, New Delhi					

2. Lateral Thinking – Dr. Edward De Bono, Penguin Books, New Delhi

Evaluation	Scheme	ISA Scheme
------------	--------	-------------------

Assessment	Weight age in Marks
ISA 1	15
ISA 2	15
Assignments Written	10
Class Tests	10
Total	50

**The indicated method may be adopted for CIE after due approval from DUGC of Department of Humanities.

<u>BACK</u>

Professional Electives – 4, 5 & 6

Data Engineering

Prog	gram: Bachelor of Engineering	g		
Course Title: Social Network Analysis Course Code: 18ECSE				
L-T-F	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 03hrs/w			veek
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	hing Hrs: 40	Tutorial/Practical hrs :	Exam Duration: 03 h	rs
		Unit –I		
1	Introduction : Motivation,	different sources of net	work data, types of	6 hrs
-	networks, tools for visualizing	ng network data.		01113
	Structural properties of ne	tworks : Notions of centra	ality, cohesiveness of	
2	2 subgroups, roles and positions, structural equivalence, equitable partition			
stochastic block models.				
		Unit –II		
	Cascading properties of net	works : Information/influe	nce diffusion on	
3	networks, maximizing influence spread, power law and heavy tail			
	distributions, preferential at			10 hrs
	Small world phenomenon :	Six Degrees of Separation,	Structure and	
4	Randomness, Decentralized Search, Empirical Analysis and Generalized			6 hrs
	Models, Core-Periphery Stru	uctures and Difficulties in D	ecentralized Search,	0 1110
Advanced Material: Analysis of Decentralized Search.				
Unit –III				
5	Mining Graphs- I : Commun	ity and cluster detection: r	andom walks.	4 hrs
6	Mining Graphs- II : Spectral methods; link analysis for web mining.			4 hrs

Text Books:

- 1. Stanley Wasserman, Katherine Faust, Social network analysis: methods and applications, Cambridge University Press, 1994.
- 2. David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World., Cambridge University Press, 2010.

Reference Books:

- 1. Peter R. Monge, Noshir S, Contractor, Theories of communication networks, Oxford University Press, 2003.
- 2. Duncan Watts, Six degrees: the science of a connected age. Norton, 2004.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	Q.No1, Q.No2,	1, 2	Solve Any 2 out of 3
	Q.No3		
II	Q.No4, Q.No5,	3, 4	Solve Any 2 out of 3
	Q.No6		
ш	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	

Prog	gram: Bachelor of Engin	eering		
Course Title: Natural Language Processing Course Code: 22ECSE40)3
L-T-F	P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/we	ek
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	hing Hrs: 30	Tutorial/Practical hrs: 28 hrs	Exam Duration: 3 hrs	
		Unit –I		
	Introduction to NLP	and Deep Learning: Introduction	on to Natural Language	
1	0, 11	ions of Natural Language ec objective function gradients	Processing, Word2vec	5 hrs
		Recurrent Neural Networks:	Dependency Grammar,	
2		Neural dependency parsing, Recurrent Neural Networks and Language		
Models, Vanishing Gradients, Fancy RNNs				
		Unit –II		
3	Machine Translation,	Seq2Seq and Attention: Machin	ne Translation, Seq2Seq	6 hrs
	and Attention, Advand	ced Attention		
4	Transformer Netwo	rks, Coreference Resolution,	Memory Networks:	6 hrs
	Transformer Network	s and CNNs, Tree Recursive	Neural Networks and	
	Constituency Parsing	Advanced Architectures and M	emory Networks	
	1	Unit –III		
5	Reinforcement Learni	ng		6 hrs
	Reinforcement Learni	ng for NLP, Semi-supervised Lea	rning for NLP, Future of	
		sk Learning and QA Systems		

Text Books:

1. Yoav Goldberg. A Primer on Neural Network Models for Natural Language Processing, 2016.

Reference Books:

- 1. Dan Jurafsky and James H. Martin. Speech and Language Processing 3Ed. Draft.
- 2. Ian Goodfellow, YoshuaBengio, and Aaron Courville. *Deep Learning*. MIT Press.

List of experiments

Expt./Job	Brief description about the experiments	No. of Lab slots
No.		per batch (2 hrs)
1.	Installation of nltk tool kit in python and practicing of	1
1.	word tokenization, spellchecker programs.	
2.	Compute softmax points (probabilities) for numerical	1
۷.	stability.	
3.	Implement the word2vec model for word vector	1
5.	representation.	
	Implement the dependency parsing for the following	2
4.	sentence "I parsed this sentence correctly" and show at	
4.	least three steps for parsing with stack and buffer	
	status.	
5.	Write a program to build seq2seq sentence from word	1
5.	corpora(Tensorflow).	
6.	Implement the neural image caption generator.	2
7.	Implement question answering (QA) system, to answer	1
7.	the questions posed in natural language.	

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
Ш	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
	Q.No7	6	Solve Any 1
111	Q.No8		Solve Any I

Prog	gram: Bachelor of Engineerir	Ig		
Course Title: Fuzzy Set Theory Course Code:19ECSE				
L-T-I	P:3-0-0	Credits: 3	Contact Hrs: 3hrs/we	eek
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	ching hrs: 40	Tutorial/Practical hrs: NA	Exam Duration: 3 hrs	;
		Unit –I		
1	Introduction : Introduction	n to Fuzzy Logic, Fuzzy Me	mbership Functions,	8hrs
-	Operations on Fuzzy Sets			01113
2	Fuzzy Measures: Fuzzy Relations, Fuzzy Proposition, Fuzzy Implications, Fuzz			
2	2 Inferences			
		Unit –II		
	Fuzzy Relations and Fuzzy	Graphs: Fuzzy Relations, Co	ompositions of Fuzzy	
3	Relations, Properties	of the Min-Ma	ax Composition,	8 hrs
	DefuzzificatinTechniques,Lambda-cut method, Weighted average method,			
	Maxima methods, Centroid	methods, Output of a Fuzzy	System	
4	Uncertainty Modeling: A	Application-oriented Modeli	ing of Uncertainty,	8hrs
	Causes of Uncertainty, Unc	ertainty Methods, Possibility	y Theory	oms
		Unit-III		
5	Fuzzy Data Bases and Que	eries: Introduction, Fuzzy F	Relational Databases,	4 hrs
	Fuzzy Queries in Crisp Data	bases		-7 111 3
6	Fuzzy Sets and Expert Syste	ems: Introduction to Expert S	Systems, Uncertainty	4 hrs
Ŭ	Modeling in Expert Systems	s, Applications		- T 111.3

Text Books:

- 1. H. J. Zimmermann, Fuzzy Set Theory-and Its Applications, Fourth Edition, 4th Ed., Springer Science Business Media, LLC, 2001
- 2. Chander Mohan, An Introduction to Fuzzy Set Theory and Fuzzy Logic,2nd ed. Vivo Books pvt ltd , 2015

Reference Books:

- 1. Timothy J. Ross, Fuzzy Logic with Engineering Applications, 3ed., 2010, A John Wiley and Sons, Ltd., Publication
- 2. Kumar S. Ray,Soft Computing and Its Applications: Fuzzy Reasoning and Fuzzy Control, 1st Edition, Apple Academic Press 2014
- 3. Ahmed M. Ibrahim, Fuzzy Logic for Embedded Systems Applications, Elesvier Press, 2004.

Scheme for End Semester Assessment (ESA)

UNIT	UNIT 8 Questions to be set of 20		Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	Solve Any 1
	Q.No8	6	

Progr	Program: Bachelor of Engineering					
Cours	Course Title: Advanced Computer Graphics Course Code:22					
L-T-P:	L-T-P: 0-0-3 Credits: 3 Contact Hrs:		Contact Hrs: 6	õhrs/week		
ISA N	1arks: 100	ESA Marks: 00	Total Marks: 1	.00		
Teach	ning Hrs:	Tutorial/Practical hrs: 84	Exam Duration	:-NA-		
		*No Units	·			
1	Review of Rasterizat	ion and Ray tracing		3hrs		
2	Rendering accelerati	on data structures		3hrs		
3	Applications of Texture mapping			3hrs		
4	Physically based lighting models, global illumination			3hrs		
5	Multi-pass shading t	echniques		6hrs		
6	Surface design and r	epresentation (Implicit and Pa	rametric forms)	3hrs		
7	Mesh Parameterizat	ion		6hrs		
8	Mesh simplification			3hrs		
9	Animation			3hrs		
10	Virtual world design			6hrs		
11	Volume rendering			3hrs		

Reference Material:

- 1. Peter Shirley, Fundamentals of Computer Graphics, 2009, A. K. Peters
- 2. Tomas Akenine-Moller, Eric Haines, and Naty Hoffman, Real-Time Rendering, 2008, A.K. Peters.
- 3. Henrik Wann Jensen, Realistic Image Synthesis Using Photon Mapping , 2001, A.K. Peters.
- 4. Watt A. and M. Watt, Advanced Animation and Rendering Techniques Theory and Practice, 1994, Addison-Wesley.
- 5. Foley, J.D., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice, Addison-Wesley, ISBN 0-201-12110-7. (Errata)
- 6. Neider, J., T. Davis, and M. Woo, OpenGL Programming Guide, Addison-Wesley, ISBN 0-201-63274-8.
- 7. Blinn J., A Trip Down the Graphics Pipeline. Jim Blinn's Corner, Morgan Kaufmann.
- 8. Luebke D., M. Reddy, J. Cohen, A. Varshney, B. Watson, R. Huebner, Level of Detail for 3D Graphics, 2003, Morgan-Kaufman.
- 9. Ebert D., F. Musgrave, D. Peachey, K. Perlin and S. Worley, Texturing & Modeling: A Procedural Approach 2e AP Professional.
- 10. Parent, R., Computer Animation: Algorithms and Techniques Morgan Kaufmann.
- 11. Hoffman, C. Geometric and Solide Modeling Morgan Kaufmann.
- 12. Graphics Gems I-V, AP Professional.
- 13. Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory To Implementation.
- 14. Bretscher, O., Linear Algebra with Applications 2e Prentice Hall.

Scheme for End Semester Assessment (ESA): No ESA for the course

*Content and reference material as shared by IIT Delhi Professor

Prog	gram: Bachelor of Engin	eering				
Cou	Course Title: Advanced Computer Vision Course Code: 22ECSE434					
L-T-F	T-P: 0-0-3 Credits: 3 Contact Hrs: 6hrs/wee					
ISA	ISA Marks: 100 ESA Marks: 00 Total Marks: 100		Total Marks: 100			
Теас	Teaching Hrs: Tutorial/Practical hrs- 84 Exam Duration: -NA-					
		*No Units				
1	Basics of Machine Lea	rning, and Convolutional Neu	ıral Networks	1.5hrs		
2	Optimization strategie	s for training deep neural net	tworks	1.5hrs		
3	Advanced Architecture	es for Image Classification		3hrs		
	(VGGNet, InceptionNet, ResNet, DenseNet, MobileNets etc.)					
4	Techniques for Visualizing CNNs for Image Analysis			3hrs		
5	Traditional Techniques for Object Detection			3hrs		
	(Viola-Jones, Parts bas	sed models etc.)				
6	Modern Techniques fo	or Object Detection		4.5hrs		
	(Single shot and two s	hot detectors, key point base	d detectors)			
7	Traditional Techniques	s for Image Segmentation		3hrs		
8.	Modern Techniques fo	or Image Segmentation		4.5hrs		
9.	Generating Synthetic Images (AR models, VAEs and GANs)			4.5hrs		
10.	Vision and Language			4.5hrs		
11.	Learning Models for G	eometrical Vision Problems		3hrs		
12.	Object Tracking			3hrs		
13.	Attack and defense te	chniques for computer vision	systems	3hrs		

Reference Material:

- 1. Forsyth and Ponce, Computer Vision: A Modern Approach, Published by Pearson, 2012
- 2. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.

Ian Goodfellow, YoshuaBengio and Aaron Courville, Deep Learning, MIT Press, 2016.

Scheme for End Semester Assessment (ESA): No ESA for the course *Content and reference material as shared by IIT Delhi Professor

Prog	gram: Bachelor of Engineer	ing		
Course Title: Generative AI Course Code: 24ECSE				E458
L-T-I	L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/w			week
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100	
Теас	ching Hrs: 30	Tutorial/Practical : 28 hrs	Exam Duration: 3 hr	S
		Unit –I		
	Introduction to Genera	tive AI: Definition, Overview	of Generative AI,	
1	Importance and applications of Generative AI, Evolution of AI towards			
	generative models, Key milestones and breakthroughs in Generative AI.			
	Generative Models I: Aut	oencoders (AE) and Variational A	utoencoders (VAEs)	
	Architecture: Encoder, D	ecoder, Latent Space, Training v	vith ELBO (Evidence	
	Lower Bound), Applicatio	ns and limitations.		
2		Networks (GANs): Architectu		4 hrs
_	Discriminator, Training process, loss functions, Common issues, Variants:			
	DCGAN, CycleGAN, StyleGAN.			
	Diffusion Models: Forward process (encoders), reverse process (decoders),			
	score matching, guided diffusion			
	Training and Evaluation of Generative AI Models: Optimization Methods:			
	Gradient Descent, Stochastic Gradient Descent (SGD), Adam Optimizer, Adam			
	(Adaptive Moment Estimation), RMSProp (Root Mean Square Propagation),			
3	Adagrad (Adaptive Gradient Algorithm), AdaDelta.			4 hrs
	Evaluation Metrics: Inception Score (IS), Frechet Inception Distance (FID),			
	Perplexity, Reconstruction Error, Mode Score, Diversity Metrics, Wasserstein			
	Distance, Earth Mover's Distance (EMD), BLEU Score			
	Challenges: Mode collaps	e, stability, and convergence.		
	Concretive Medale III	Unit -II Autorograssiva Madala, Dafini	tion and Dringinlas	
		Autoregressive Models: Defini Conditional Dependence, Autore		
		•	-	
4	Examples of Autoregressive Models: AR Models in Time Series Analysis, Autoregressive Integrated Moving Average (ARIMA)			
4	Autoregressive Models fo	o o i <i>i</i>		4 hrs
		nitecture, Training, Applications		
1		nitecture, Training, Applications		
	wavenet - Overview, Arti	intecture, maining, Applications		

	Generative Models II: Transformers			
	Introduction to Transformers, Origins and evolution from traditional sequence			
	models (like RNNs and LSTMs) to transformers, self-attention mechanism,			
5	multi-head attention, position-wise feedforward networks.			
	Transformer Architecture: breakdown of encoder and decoder stacks, Layer			
5	normalization and residual connections, Masked self-attention in the decoder	4 hrs		
	for auto-regressive generation, Pre-training and Fine-tuning.			
	Transformer-based Autoregressive Models: Overview, Architecture, Training,			
	Applications, BERT (Bidirectional Encoder Representations from Transformers),			
	T5 (Text-to-Text Transfer Transformer)			
	Generative Models II: Large Language Models (LLMs)			
	Introduction to LLMs, Overview of Large Language Models (e.g., GPT-3, GPT-4),			
6	Training methodologies and scalability, Integration of LLMs in various			
	generative tasks, Fine-tuning and transfer learning with LLMs, Building and			
	deploying LLM-based applications.			
	Unit –III			
	Advanced Topics in Generative AI:			
	Flow-Based Models, Invertibility, Volume Preservation, Normalizing Flows,			
7	Invertible Convolution, Coupling Layers Sparse Attention Mechanisms,	5 hrs		
7	Multimodal Generative Models, Meta-Learning and Few-Shot Learning,	5 nrs		
	Continual Learning and Transfer Learning, Privacy-Preserving Generative			
	Models, Quantum Generative Models			
	Models, Qualitum Generative Models			
	Ethical Considerations and Responsible AI:			
8		2 hrs		

Networking

Program: Bachelor of En				
Course Title: Unix Netwo	ork Programming	Course Code: 18ESCE4	04	
L-T-P: 3-0-0 Credits: 3 Contact Hrs: 03 hrs/we			eek	
ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Feaching Hrs: 40	Tutorial/Practical hrs:	Exam Duration: 3 hrs		
	Unit –I			
Communication P	rotocols: Introduction TCP/IP -	- Internet Protocols XNS	5 hrs	
SNA NetBIOS UUCF	Protocol comparisons.		5 1115	
Elementary Socke	t Programming: Introduction	Overview UNIX Domain		
2 Protocols Socket	Addresses Elementary Socket	system calls A simple	5 hrs	
example.				
Advanced Socket	Programming: Advanced Socke	et System calls Reserved		
B Ports Stream Pipes	Ports Stream Pipes Passing file descriptors Socket options Asynchronous I/O			
Input/output Mult	Input/output Multiplexing Out-of-Band Data Sockets and Signals Internet			
Super server Socket implementation.				
	Unit –II			
4 Time and Date R	outines: Introduction Interne	t Time and Date Client	5 hrs	
Network Time Synd	Network Time Synchronization.			
5 Ping Routines : Int	roduction Internet Ping Client X	NS Echo Client.	5 hrs	
Trivial File Trans	fer Protocol: Introduction	Protocol Data Formats		
6 Connections Clie	ent user interface UDP	implementation TCP	6 hrs	
implementation.	implementation.			
	Unit –III			
7 Remote Command	Execution: Introduction Secu	rity Issues rcmd function	4 hrs	
and rshd Server rex	and rshd Server rexec function and rexecd Server.			
8 Remote Login: Introduction Terminal Line DisciplinesASimple Example.				
Text Books:				
1. W.R. Stevens, Un	ix Network Programming, PHI 2	003.		
2. M. J. Rochkind, A	dvanced Unix Programming, 2n	d Edition, Pearson Education	on 2004	

1. Sumitabha Das, Unix Concepts and Applications, 3rd Edition, Tata McGraw-Hill 2006.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	

Prog	gram: Bachelor of Engine	ering			
Course Title: Software Defined Networks Course Code: 20ECSE405					
L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3hrs/week					
ISA	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Теас	Teaching Hrs: 40Tutorial/Practical hrs: NAExam Duration: 3 hrs				
		Unit –I			
1	Introduction: Evolving	g network requirements, T	ypes of Network and		
	Internet Traffic, The SD	N approach, Data Center Ne	tworking: Big Data over	8hrs	
	SDN, Cloud Networking	g over SDN.			
2	SDN Data Plane and	OpenFlow: Data plane fu	nctions and protocols,		
	OpenFlow logical net	twork device, OpenFlow	protocol, OpenFlow	8 hrs	
	messages, OpenFlow events: Responding to switches.				
Unit –II					
3	Control Plane: SDN	Control plane architectu	re, POX architecture,	8 hrs	
	OpenDaylight architect	ure, REST, Mininet based exa	amples	01113	
4	Programming SDNs:	Components in POX, F	OX APIs, Registering		
	•	t System: Handling Events, C	-	8 hrs	
		, Binding to Components'	, 0	••	
	packets, Working with sockets: ioworker, OpenFlow in POX.				
	1	Unit –III			
5		plane: SDN Application Pla	,	4 hrs	
	Engineering, Measurement and Monitoring. Security Requirements, SDN				
	Security.				
6		tualization (NFV): OpenFlov			
		vork Virtualization: A Simpli	•	4 hrs	
	Virtualization Architectu	are, Benefits of Network Virt	ualization.		

Text Books:

- 1. William Stallings, "Foundations of modern networking: SDN, NFV, QoE, IoT and Cloud", Addison Wesley; 1 edition, 2015.
- 2. Thomas D. Nadeau & Ken Gray, "SDN Software Defined Networks", O'Reilly, 2013.

Reference Books:

- 1. SreenivasVoruganti, Sriram Subramanian, "Software-Defined Networking (SDN) with OpenStack", Packt Publishing, 2016.
- POX manual current documentation, https://openflow.stanford.edu/display/ONL/POX+Wiki.html

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	

Prog	gram: Bachelor of Engineering				
Cours	e Title: Cyber Security		Course Code: 19ECS	E401	
L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/v			week		
ISA	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 30 Tutorial/Practical hrs:28 Exam Duration: 3 hr			rs		
		Unit - I			
		f Cybersecurity, Importar			
1	Cybersecurity, Cybersecurity Threat Landscape, Types of Cyber Attacks, Cybersecurity Fundamentals, Overview of Web, network, Database, mobile, IoT and cloud security, Threat Intelligence and Incident Response				
2	Cyber-crime and Cyber law: Classification of cyber-crimes, Common cyber- crimes- cyber-crime targeting computers and mobiles, cyber-crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus- operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organization's dealing with Cyber crime and Cyber security in India, Case studies.				
Unit - II					
3	Social Media Security: Soc Hashtag, Viral content, So Challenges, opportunities an related to social media, Flagg regarding posting of inappro- media, Case studies.	ocial media marketing, So d pitfalls in online social net ging and reporting of inappro	cial media privacy, work, Security issues priate content, Laws	6 hrs	
4	E-commerce Security: Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorized banking transactions. Relevant provisions of Payment Settlement Act, 2007.			6 hrs	

Unit - III

	Digital Devices Security, Tools and Technologies: End Point device and Mobile	
	phone security, Password policy, Security patch management, Data backup,	
-	Downloading and management of third-party software, Device security policy,	Chro
5	Downloading and management of third-party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus,	6 hrs
	Management of host firewall and Anti-virus, Wi-Fi security, Configuration of	
	basic security policy and permissions.	

Reference Books:

- 1. Nina Godbole, Sunit Belapure, "Cyber Security", Wiley India.
- 2. R C Mishra, "Cyber Crime Impact in the New Millennium", Auther Press
- 3. Henry A. Oliver, "Security in the Digital Age: Social Media Security Threats and Vulnerabilities", Create Space Independent Publishing Platform
- 4. Elias M. Awad, "Electronic Commerce Prentice", Hall of India Pvt Ltd.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set	Chapter	Instructions
	of 20 Marks Each	Nos.	
I	3 Questions to be set	1,2	Any 2 questions are to be
	of 20 Marks Each		answered
П	3 Questions to be set	3,4	Any 2 questions are to be
	of 20 Marks Each		answered
	2 Questions to be set	5,6	Any 1 question is to be
111	of 20 Marks Each		answered

Cyber Security – Tutorial Practical assignments on

Exercises	Slots
1. Phishing attack	1
2. SQL injection	1
3. CSRF attack	2
4. XSS attack	2
5. Password cracking	1
6. Man In The Middle attack	2
7. Hash calculation	1
8. File encryption -	2
9. DoS Attack	2
	BACK

Program: Bachelor of Engineering					
Cour	se Title: Mobile and W	/ireless Networks	Course Code: 20ECS	E412	
L-T-P	2:3-0-0	Credits: 3 Contact Hrs: 3hrs/		eek	
ISA Marks: 50 ESA Marks: 50 Total		Total Marks: 100			
Teac	hing Hrs: 40	Tutorial/Practical hrs:	Exam Duration: 3 hr	S	
Unit –I					
	Introduction: Charac	teristics of Cellular Systems, Fund	amentals of Cellular		
1	Systems, Cellular	System Infrastructure, Satellite	Systems, Network	4 hrs	
-	Protocols, Ad Hoc Ne	etworks, Sensor Networks, Wirele	ess LANs, MANs and	41113	
	PANs.				
	Mobile Radio Prop	bagation: Introduction, Types	of Radio Waves,		
2		nisms, Free Space Propagation, Lan		6 hrs	
_	Loss, Doppler Effect,	Delay Spread, Intersymbol Inter	ference, Coherence	0	
	and width Cochanne	l Interference.			
	•	Introduction, Cell Area. Signal	J		
3		of a Cell, Frequency Reuse, How	v to Form a Cluster,	6 hrs	
	Cochannel interferen	ice, Cell Splitting, Cell Sectoring.			
	1	Unit –II			
	Mobile Communic	· · · · · · · · · · · · · · · · · · ·	•		
	Infrastructure, Registration, Handoff Parameters and Underlying Support,				
4	Parameters Influencing Handoff, Handoff Underlying Support, Roaming				
	Support, Home Agents, Foreign Agents, and Mobile IP, Rerouting in				
		Iulticasting. (Chapter 10 from Text			
	Mobile network and transport layer: Mobile IP Packet delivery-Tunneling-				
5	Reverse tunneling, IPV6-Dynamic host routing protocol, Traditional TCP-			5 hrs	
	Congestion control-classical TCP-Snooping Mobile TCP, Transaction				
		er 2.5/3G Wireless Networks.			
		Mobile Networks: Drivers for 5		Char	
6		Mobile Networks. Cooperation for	or Next Generation	6 hrs	
	Wireless Networks				
Unit –III Mobile Clouds: Technology and Services for Future Communication					
7		•.		4 hrs	
		Radio for 5G Wireless Networks.	rk: Introduction		
		technologies:Femtocell Netwo			
8		hallenges Push-to-Talk (PTT) Tech		4 hrs	
	Network Technology, PTT in iDEN Cellular Networks, PTT in Non-iDEN Cellular Networks: PoC. (Chapter 16)				
	Central Metworks. PC				

Text Books:

- 1. Dharma Prakash Agrawal, Qing –An Zeng, "Introduction to wireless and mobile systems", Cengage Learning, 2014.
- 2. Rodriguez, Jonathan. Fundamentals of 5G mobile networks. John Wiley & Sons, 2015.
- 3. Roy Blake, "Wireless communication technology", Cengage Learning, sixth Indian reprint 2013.
- 4. Singal T.L., "Wireless communication", Tata McGraw Hill Education private limited , 2011.

Reference Books:

- 1. Wireless telecommunications systems and networks by Gray J.Mullet, Cengage Learning, Reprint 2014.
- 2. UpenaDalal, "Wireless communication" Oxford University press, first edition 2009.
- 3. MartynMallick, "Mobile and Wireless Design Essentials", Wiley Dreamtech India Pvt. Ltd., 2004.
- 4. Jochen Schiller, "Mobile Communications", Addision Wesley, 2nd Edition, 2011.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	Solve Any 1
	Q.No8	6	

KLE Techn	ological
	Creating Value, Leveraging Knowledge

Prog	ram: Bachelor of Engineerin	g			
Cour	rse Title: Wireless Communic	cation Networks	Course Code: 22ECSE4	115	
L-T-P	9: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
ISA M	Marks: 50	ESA Marks: 50	Total Marks: 100		
Теас	hing Hrs: 40	Tutorial/Practical hrs:	Exam Duration: 3 hrs		
		Unit – I			
1	systems; Frequencies for ra radio signals, additional si Multiplexing – SDM, FDM, frequency shift keying, ph	ransmissions: Reference mo adio transmission; Signal pro gnal propagation effects, m TDM, CDM; Modulation – a ase shift keying, advanced ing, multicarrier modulations	ppagation – path loss of nulti-path propagation; Amplitude shift keying, frequency shift keying,	8hrs	
2	Medium Access Control: Motivation for a specialized MAC – hidden and exposed terminals, near and far terminals; SDMA; FDMA; TDMA; CDMA; Comparison of S/T/F/CDMA; OFDMA			8hrs	
3	Telecommunication and Satellite Systems: GSM – Mobile services, system architecture, radio interface, protocols, localization and calling, handover, security, new data services; Applications of satellite systems; Types of satellite systems – GEO, LEO, MEO.			8hrs	
		Unit – II		I	
4	network; IEEE 802.11 – sy	rs radio transmissions; Infra rstem architecture, protoco nagement, 802.11b, 802.11a	l architecture, physical	8hrs	
5	LTE?; LTE OFDMA/SCFDMA M; LTE-LAA/LTE-U; LTE coordinated multipoint, D	Evolution from 1G to 4G and MIMO; LTE duplex; LTE fra Advanced – introduction, D2D communication; Need massing MIMO, beam-form	me and subframe; LTE- carrier aggregation, for 5G; Technologies	8hrs	

Textbooks:

1. Jochen H. Schiller, "Mobile Communications", second edition, Addison-Wisely.

Reference Books:

- 1. Theodore S Rappaport, "Wireless communications: Principles and Practise", 2nd Edition, Pearson.
- 2. William Stallings, "Wireless Communications & Networks", 2nd Edition, Pearson

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3,	1, 2, 3	Solve Any 3 out of 5
	Q.No4, Q.No5		
II	Q.No6, Q.No7, Q.No8	4, 5	Solve Any 2 out of 3

Scheme for End Semester Assessment (ESA)

<u>BACK</u>

Progra	am: Bachelor of Engin	eering		
Cours	e Title: Network Secu	rity	Course Code: 23ECSE417	
L-T-P:	3-0-0	Credits: 3	Contact Hrs:3 hrs/week	
ISA M	arks: 100	s: 100 ESA Marks: 0 Total Marks: 100	Total Marks: 100	
Teach	ing Hrs: 40	Tutorial/Practical hrs:	Exam Duration: 3 hrs.	
		Unit –I		
1	Introduction: Bad ad Internet Threats, Insi	ctors behind cyber-attacks, der Threats.	Data Security, Password,	4 hrs
2 3 4	Internet meats, insider meats. Evolution of cyber security: Endpoint Security, Firewall, Network Access Control, Sandbox, SASE, SD-WAN, Secure Email Gateway, Security Information & Event Management, SOAR, Threat Intelligence Services, Web Application Firewall, Wi-Fi, ZTNA Fabric pillars: Security-Driven Networking, Zero Trust Access, Adaptive Cloud Security, and Security Operations. Unit –II Network Security: Firewall policies, security fabric, Network Address Translation, Firewall authentication, Logging and Monitoring Network Security Profiles: Certificate Operations, Web Filtering, Application Control, Antivirus, Intrusion Prevention and Denial of Service,		12 hrs 8 hrs 8 hrs	
	Security Fabric	Unit –III		
5	Sign-On, ZTNA, SSL \	rastructure: Routing, Virtua /PN, IPsec VPN, High Availa P) routing, SD-WAN, high av	ability, Diagnostics, equal-	8 hrs
Text B	ooks		I	
1.	William Stallings " N 2021.	etwork Security essentials'	", 6th Edition, Pearson Edu	ucation,
Refere	ence Links:			
3.	Network Security Pro	ofessional by Fortinet Trainir	ng Institute.	

Scheme for ISA

UNIT	Category	Chapter Numbers	Marks
1,11	Midterm exam	1, 2,3	30
1,11,111	Global Certification	1,2,3,4,5	70

<u>BACK</u>

	am: Bachelor of Eng e Title: AWS Cloud		Course Code: 23ECSE418	
L-T-P:		Credits: 3	Contact Hrs:3 hrs/week	
	arks: 100	ESA Marks: NA	Total Marks: 100	
Teach	ing Hrs: 40	Tutorial/Practical hrs:	Exam Duration: 3 hrs.	
	-	Unit	- - I	
	Introduction to	AWS Cloud: The AWS Clou	d and its value proposition,	
1	Identify aspects	of AWS Cloud economics,	Different cloud architecture	8 hrs
	design principles			
	Security and Co	mpliance: AWS shared resp	onsibility model, AWS Cloud	
2	security and con	npliance, AWS access mana	gement capabilities, Identify	8hrs
	resources for security support			
	·	Unit –II	·	
	Technology: Dep	loying and operating in the	AWS Cloud: provisioning and	
	operating in th	ne AWS cloud, cloud de	ployment models, Identify	
3	connectivity options.			10 hrs
	AWS global infrastructure: Regions, Availability Zones, and Edge Locations,			
	multiple Availabil	ity Zones, Multiple AWS regi	ons	
	AWS Services and	d Resources : Identify the core	e AWS services, AWS compute	
4	services, AWS st	orage services, AWS networ	king services, AWS database	6 hrs
	services, Identify	resources for technology sup	oport	
		Unit –III		
	Billing and Pricin	g: Pricing models for AWS, A	Account structures in relation	
5	-	• •	le for billing support, Pricing	8 hrs
	information on A	WS services.		
Refere				
	•	oundations by Amazon web s		
2	AWS Academy I M	S Videos/Assignments/Lab se	essions	

2. AWS Academy LMS Videos/Assignments/Lab sessions

Scheme for ISA

UNIT	Category	Chapter Numbers	Marks
١,١١	Midterm exam	1, 2,3	30
1,11,111	Global Certification	1,2,3,4,5	70

System Engineering

Cou	rse Title: Software Testing		Course Code:18ECSE	407
L-T-I	P:3-0-0	Credits: 3	Contact Hrs: 03 hrs/we	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	ching Hrs: 40	Tutorial/Practical:NA	Exam Duration: 3 hrs	
		Unit – I		
	Software Testing Princ	iples: Need for testing, T	he Psychology and	
1	Economics of Program	Testing Program, Inspections	, Walkthroughs, and	4hrs
	Reviews.			
	Test-Case Design: Overvi	ew, White box testing, Error (Guessing, strategies ,	
2	Module (Unit) Testing-Ir	ncremental Testing, Top-dow	n versus Bottom-up	6hrs
	Testing, Performing the T	est.		
	Higher-Order Testing: Fu	Higher-Order Testing: Function testing, System testing, Acceptance testing,		
3	Installation testing, Test planning and Control, Test completion criteria,			6hrs
	Extreme testing.			
		Unit – II		
	Testing Tools and Stand	ards: Automated Tools for	Testing - Static code	
4	analyzers - Test case generators - GUI Capture/Playback – Stress Testing -			10hrs
-	Testing Client – server	Testing Client – server applications – Testing compilers and language		
	processors - Testing web-enabled applications.			
5		ges – Introduction to PCMM,	CMMI and Six Sigma	6hrs
-	concept – ISO 9000.			
		Unit – III	1	
	-	sting: Introduction to softwar		-
6		ity control - Quality assurance	e - quality circles and	4hrs
	quality improvement.			
_		cost – Measuring quality	-	
7		nitecture, Process, memory a	and file management	4hrs
	in Mobile OS, Network O	5.		

Text Books:

- 1. Glenford J. Myers, Tom Badgett, Corey Sandler, and Todd M. Thomas, "The Art ofSoftware Testing", John Wiley & Sons, Second edition, 2004.
- 2. Roger S. Pressman, "Software Engineering. A Practitioners Approach", McGraw-HillInternational Edition, Seventh edition, 2009.

References:

- 1. William E. Perry, "Effective Methods for Software Testing", John Wiley & Sons, Secondedition, 2000.
- 2. Boris Beizer, "Techniques for Functional Testing of Software and Systems", John Wiley & Sons, 1995.
- 3. P.C. Jorgensen, "Software Testing A Craftman's Approach", CRC Press, 1995.
- 4. Boris Beizer, "Software Testing Techniques", Van Nostrand Reinhold, Second edition, 1990.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2
III	Q.No7, Q.No8	6, 7	Solve Any 1

<u>BACK</u>

Prog	gram: Bachelor of Engin	eering		
Cou	rse Title: C# Programmi	ng and .NET	Course Code: 18ECSE409	
L-T-F	P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	Teaching Hrs: 40Tutorial/Practical hrs- NAExam Duration: 3 hrs		Exam Duration: 3 hrs	
		Unit –I		
	The Philosophy of .	NET: Understand the motiv	vation behind the .NET	
	platform, Common L	anguage Infrastructure (CLI)	. Know the role of the	
	Common Type System	(CTS), the Common Languag	ge Specification (CLS) and	
1.	the Common Languag	e Runtime (CLR), Understand	the assembly, metadata,	5hrs
	namespace, type dist	inction, Contrast single-file a	nd multi-file assemblies,	
	Know the role of th	ne Common Intermediate L	anguage (CIL), Platform	
	independent .NET(Mo	no / Portable .NET distributio	ns).	
		entals: Language Fundament		
	Types, primitive types	s the Nullable and enum typ	pes, Classes and objects,	
2.	Defining classes, Cre	eating objects, Using static	members, Overloading	7 hrs
	Methods, Various C	onstructors. Encapsulating	data, access modifiers,	,
	properties, indexers arrays and readonly fields. Structures. String and			
	DateTime classes, thre	e pillars of OOPs		
		ct Life Time: Ode to Errors, E	•	
		handling, the System. Excep		
	-	Catching Exceptions, CLR		
3.	(System.SystemExcept	,, 11	tion-Level Exceptions	4 hrs
		ception). Handling Multiple		
		e Exception, Understanding O	bject Life time. The CIL of	
	"new", The Basics of G			
		Unit –II		
	•••	gm Interfaces and Collections	-	
	•	est Delegate and events. Interf		<u> </u>
4.		cit interface implementation,		6 hrs
	IEnumerator, IList, IComparer and their Generic equivalent. Working with			
	generic List, Stack, Dic	•		
		v Forms Applications: Anatom		
		Control Events, Responding to	•	
5.		is with Windows Forms, Buil		5 hrs
		I, Adding Controls to Forms (II		
		, Working with Basic Controls	inke Buttons, Configuring	
	Tab Order.			

6.	Working with Database: Introduction to ADO.NET, Connecting to a database, Understanding DataTables, Creating a DataAdapter, Referencing fields in a DataRow, Navigating records, Adding, editing, and deleting records, Building an ADO.NET example.	5 hrs
	Unit –III	
7.	Understanding the .NET Assemblies: Problems with Classic.COM Binaries, An overview of .NET Assembly, Building a single file test assembly, A C# Client Application, A Visual Basic .NET Client Application, Cross-Language Inheritance, Exploring the Car Library's Manifest, Exploring the Car Library's Types.	4 hrs
8.	Using .NET Assemblies: Building a multi file assembly, Using the Multifile Assembly , Understanding the private Assemblies, Probing for private Assemblies (The Basics), Private Assemblies and XML Configuration Files, Probing for Private Assemblies(The details), Understanding Shared Assemblies, Understanding Shared Names, Building a Shared Assembly, Understanding Delay Signing, Installing/Removing Shared Assembly, Using a Shared Assembly.	4 hrs
Text	Books:	
	 Herbert Schildt, "The Complete Reference C# 4.0", Tata McGraw –Hill, 2010 Andrew Troelsen, "Pro C# with .NET 3.0", Special Edition, Dream tech Press 2007. 	s, India,
Refe	erence Books:	
	 Stephen C. Perry, AtulKahate, Stephen Walther, Joseph Mayo, "Essential of .r Related Technologies with a focus on C#, XML, ASP.net and ADO.net", 2nd Pearson, 2009. Paul J. Deitel, Harvey Deitel, "Visual C# 2010 for Programmers", 4th Edition, P 2010. 	Edition, Pearson,
1	4. Joseph Albahari and Ben Albhari. "C# 3.0/4.0 in Nutshell". 3rd Edition. O'Rille	v. 2007.

4. Joseph Albahari and Ben Albhari, "C# 3.0/4.0 in Nutshell", 3rd Edition, O'Rilley, 2007.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Any I Out of Z

L-T-P:3-0-0 Credits: 3 Control ISA Marks: 50 ESA Marks: 50 Total Teaching Hrs: 40 Tutorial/Practical hrs: Example Unit –I Introduction and History: GPUs as Parallel Computers; Architt Modem GPU; Parallel Programming Languages and Models; Goals; Evolution of Graphics Pipelines; The Era of Fixed- Function	rse Code:18ECSE408 tact Hrs: 03 hrs/week I Marks: 100 n Duration: 3 hrs ecture of a		
ISA Marks: 50ESA Marks: 50TotalTeaching Hrs: 40Tutorial/Practical hrs:ExarUnit –IIntroduction and History: GPUs as Parallel Computers; ArchitModem GPU; Parallel Programming Languages and Models; Goals; Evolution of Graphics Pipelines; The Era of Fixed- Function	l Marks: 100 n Duration: 3 hrs		
Teaching Hrs: 40 Tutorial/Practical hrs: Examination Unit –I Introduction and History: GPUs as Parallel Computers; Architt Modem GPU; Parallel Programming Languages and Models; Goals; Evolution of Graphics Pipelines; The Era of Fixed- Function	n Duration: 3 hrs		
Unit –I Introduction and History: GPUs as Parallel Computers; Archit Modem GPU; Parallel Programming Languages and Models; G Goals; Evolution of Graphics Pipelines; The Era of Fixed- Func			
Introduction and History: GPUs as Parallel Computers; Archit Modem GPU; Parallel Programming Languages and Models; Goals; Evolution of Graphics Pipelines; The Era of Fixed- Func	ecture of a		
Modem GPU; Parallel Programming Languages and Models; Goals; Evolution of Graphics Pipelines; The Era of Fixed- Func	ecture of a		
Goals; Evolution of Graphics Pipelines; The Era of Fixed- Func			
	Overarching		
1 Pipelines; Evolution of Programmable Real-Time Graphics; Ur	nified Graphics 7 hrs		
and Computing Processors; GPGPU; An Intermediate Step; G	PU Computing;		
Scalable GPUs Recent Developments; Future Trends.			
Introduction to CUDA: Data Datallalism: CUDA Drogram Struct			
Introduction to CUDA: Data Parallelism; CUDA Program Struc Matrix Multiplication Example; Device Memories and Data T			
 Functions and Threading; Function declarations; Kernel laun variables; Runtime API.CUDA Thread Organization; Using b 	0 hrc		
thread Id x ; Synchronization and Transparent Scalability; Thre			
; Thread Scheduling and Latency Tolerance.			
Unit –II			
CUDA Memories: Importance of Memory Access Efficiency	; CUDA Device		
Memory Types; A Strategy for Reducing Global Memory Traf	ic; Memory as		
a Limiting Factor to Parallelism; Global Memory Bandw			
³ Partitioning of SM Resources;	7 hrs		
Data Prefetching; Instruction Mix; Thread Granularit	xy; Measured		
Performance.			
Introduction to OPENCL: Introduction to OPENCL; Back	ground; Data		
4 Parallelism Model; Device Architecture; Kernel Func	tions; Device 9 hrs		
Management and Kernel Launch; Electrostatic Potential Map	in OpenCL.		
Unit –III			
Case Study: Concepts of Game Design, Applications			
5 multiplication, MRI reconstruction Molecular Visualization ar	d Gaming. 4 hrs		
Parallel Programming and Computational Thinking: Go	als of Parallel		
6 Programming, Problem Decomposition, Algorithm Selection,	Computational 4 hrs		
Thinking.			

Text Books:

1. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands on Approach", Morgan Kaufmann/Elsevier India reprint, 2010.

Reference Books:

1. Benedict R Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa, "Heterogeneous Computing with OpenCl", Morgan Kaufmann/Elsevier reprint, 2012.

UNIT	8 Questions to be set of 20	Chapter Numbers	Instructions
	Marks Each		
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
111	Q.No7	5	Solve Any 1
	Q.No8	6	

Scheme for End Semester Assessment(ESA)

Program: Bachelor of Engineering				
Cou	Course Title: Software Architecture and Design Thinking Course Code:18ECS			
L-T-P: 3-0-0 Cre		Credits: 3	Contact Hrs: 3hrs/v	week
ISA	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Теа	ching Hrs: 40	Tutorial/Practical hrs:	Exam Duration: 3 h	nrs
		Unit – I		
1		hitecture? What Software Archited uctures and Views, Architectural Pa ?		5 hrs
2	 Why Is Software Architecture Important? Inhibiting or Enabling a System's Quality Attributes, Reasoning About and Managing Change, Predicting System Qualities, Enhancing Communication among Stakeholders, Carrying Early Design Decisions, Defining Constraints on an Implementation, Influencing the Organizational Structure, Enabling Evolutionary Prototyping, Improving Cost and Schedule Estimates, Supplying a Transferable, Reusable Model, Allowing Incorporation of Independently Developed Components, Restricting the Vocabulary of Design Alternatives, Providing a Basis for Training 			
3	 The Many Contexts of Software Architecture: Architecture in a Technical Context, Architecture in a Project Life-Cycle Context, Architecture in a Business Context, Architecture in a Professional Context, Stakeholders, How Is Architecture Influenced?, What Do Architectures Influence? 			5 hrs
	Unit - II			
4	4 Understanding Quality Attributes: Architecture and Requirements, Functionality, Quality Attribute Considerations, Specifying Quality Attribute Requirements, Achieving Quality Attributes through Tactics, Guiding Quality Design Decisions			5 hrs
5	Quality Attributes: Tactics for Availability, Tactics for Interoperability, Tactics for Modifiability, Tactics for Performance, Tactics for Security, Tactics for Testability, Tactics for Usability.			6 hrs
6	Architectural Tactics and Patterns: Architectural Patterns, Overview of the Patterns Catalog, Relationships between Tactics and Patterns, Using Tactics Together			5 hrs

Unit – III			
7	Architecture and Requirements: Gathering ASRs from Requirements Documents, Gathering ASRs by Interviewing Stakeholders, Gathering ASRs by Understanding the Business Goals, Capturing ASRs in a Utility Tree, Tying the Methods Together	4 hrs	
8	Designing an Architecture, Implementation, Testing and Evaluation Designing: Design Strategy, The Attribute-Driven Design Method, The Steps of ADD, Implementation, and Testing: Architecture and Implementation, Architecture and Testing, Evaluation: Evaluation Factors, The Architecture Tradeoff Analysis Method, Lightweight Architecture Evaluation	4 hrs	
Text	Books (List of books as mentioned in the approved syllabus)		
 Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice (3rd Edition), Addison-Wesley Professional; 3 edition Frank Buschmann, RegineMeunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern- Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2012 (chapter 2) 			
Refe	rences:		
	 Richard N. Taylor, NenadMedvidovic and Eric M. Dashofy: Software Archite Foundations, Theory, and Practice, Wiley-India 2012 	cture:	

2. Mary Shawand David Garlan: Software Architecture-Perspectives on an Emerging Discipline, Prentice Hall of India, 2007.

Scheme for End Semester	Assessment (ESA)
-------------------------	------------------

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	

Pro	gram: Bachelor of Engir	eering		
Course Title: Model Thinking Course Code: 18ECSE4			11	
L-T-I	Р: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/we	ek
ISA Marks: 50 ESA Marks:50 Total Marks: 100				
Teaching Hrs: 40 hrsTutorial/Practical hrs- NAExam Duration: 03 hrs				s
		Unit –I		
1	Why Model: Model Thinking - The Need, Advantages and Disadvantages,			
Ŧ	Segregation/Peer Effe	cts, Case Study		4 hrs
	Modeling People, Tip	oping Points & Economic Grow	wth: Rational Models,	
2	Behavioral Models, Ru	le Based Models, Percolation N	/lodels, Growth and its	6 hrs
	Kinds			
	Special Topics: Stand	ng Ovation Model, Game of Lif	e, Lyapunov Functions:	
3	Equilibrium, A cycle, Randomness or Complexity, Coordination and Culture,			
5	Urn Models, Polya Process, Paths and Networks, Prisoners' Dilemma,			
	Collective Action & Mechanism Design			
		Unit –II		
	Randomness and Learning Models: Luck as Randomness, Random Walks &			
4	Colonel Blotto, Replicator Dynamics, Fisher's Fundamental Theorem,			
	Prediction and the Ma	ny Model Thinker, Social Model	S	
	Model Checking and	Modelling Concurrent Syste	ms: Model Checking,	
5	Characteristics of M	odel Checking, Transition Syst	tems, Parallelism and	8 hrs
	Communication, The State Space Explosion			
		Unit –III		
6	Linear-Time Propert	i es: Linear-Time Behavior, S	afety Properties and	4 hrs
U	Invariants, Liveness Pr	operties, Fairness		4 1113
	Regular Properties: /	Automata on Finite Words, M	odel-Checking Regular	
7	Safety Properties, Aut	omata on Infinite Words, Model	Checking with Omega-	4 hrs
	Regular Properties			
	Books:			
1. Scott E Page, The Model Thinker, Basic Books Publication, 2018.				
2. ChristelBaier and Joost-Pieter Katoen, Principles of Model Checking (Representation				
	and Mind Series), Th	e MIT Press, 2008.		
	erence Books:			
	1. Model Thinking Cou	rsera online course from Michig	an University.	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
	Q.No7	6	Solve Any 1
	Q.No8	7	

Program: Bachelor of Engineering				
Course Title: Compiler optimization for HPC		Course Code: 22ECSE431		
L-T-P: 3-0-0	-T-P: 3-0-0 Credits: 3			
ISA Marks: 50	ESA Marks: 50	Total Marks:100		
Teaching Hrs: 40	Tutorial/Practical hrs:	Exam Duration: 3hrs		
	Content			
Introduction to HPC, Recap of Com	pilers			
Compiler Frontend				
Fortran, C/C++, CLANG based assig	gnments			
OpenMP pragmas for HPC				
Intro to DWARF debugging support				
Compiler Backend – ~2 assignments				
Vectorization				
Scalar optimization				
HLO				
Few other topics				
HPC Libraries – 1 assignment				
BLAS, FFT, Solvers – open-source libraries				
Optimizations				
Mini Project ~10 hours (students work guided by lab faculty and periodically AMD engineers)				
Open source HPC code and optimization opportunities				

Prog	gram: Bachelor of Engine	ering		
Course Title: Quantum Computing Fundamentals Course Code: 22ECSE4				
L-T-I	-T-P: 3-0-0 Credits: 3 Contact Hrs: 03 hrs/v			week
ISA	Marks: 50 ESA Marks: 50 Total Marks: 100			
Теас	ching Hrs: 40	Tutorial/Practical hrs :	Exam Duration: 3 hrs	5
		Unit – I		
1	Introduction and Background: Overview, Computers and the Strong Church– Turing Thesis, The Circuit Model of Computation, A Linear Algebra Formulation of the Circuit Model, Reversible Computation, A Preview of Quantum Physics, Quantum Physics and Computation.			7 hrs
2	Linear Algebra and the Dirac Notation: The Dirac Notation and Hilbert Spaces, Dual Vectors, Operators, The Spectral Theorem, Functions of Operators, Tensor			5 hrs
3	Introduction to Quantum computing frameworks: Toolbox in python, QISKIT, Xanadu, Rigetti etc.		4 hrs	
Unit – II				
4	Qubits and the Framework of Quantum Mechanics: The State of a Quantum System, Time-Evolution of a Closed System, Composite Systems, Measurement, Mixed States and General Quantum Operations, Mixed States, Partial Trace, General Quantum Operations.			8 hrs
5	A Quantum Model of Computation: The Quantum Circuit Model, Quantum			5 hrs
6	6 Exploring Python for Solving Problems / Projects using Quantum Computing			3 hrs
Unit – III				
7	Introductory Quantum Algorithms: Probabilistic Versus Quantum Algorithms, Phase Kick-back, The Deutsch Algorithm, The Deutsch–Jozsa Algorithm, Simon's Algorithm.			4 hrs
8	Case Studies and Proje Sciences, Machine Lear	ects done during the course: Im ning, Networking	age processing, Data	4 hrs

Text Book (List of books as mentioned in the approved syllabus)

- 1. Phillip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to Quantum Computing ", Oxford University, Press, 2007
- 2. User Guide Quantum Toolbox in Python, Release 4.2.0 Qutip.org

References

1. Internet References, toolbox and other relevant software.

Semester - VIII

Program: Bachelor of Engineering		Semester - VIII
Course Title : Industry Training		Course Code: 18ECSI493
L-T-P: 0-0-6 Credits: 6		Contact hrs: 12hrs/week
ISA Marks: 50 ESA Marks:50		Total Marks: 100
Teaching hrs:		Exam Duration: 3 hrs

Overview of the Course

Industry Training is a supervised, practical training periods for which Undergraduate, final year students earn academic credits. Industry Training provide excellent opportunities for students to put into practice much of the knowledge and skills acquired during their studies and to gain firsthand knowledge of the software industry. It is also an opportunity for employers to observe the student in the work environment and evaluate their potential for possible future employment.

The companies selected for the Industry Training can range from start-ups to large scale industries. The students who got placed in campus interviews may be offered Industry Training depending upon the need of the company. Other students who wish to do internship are responsible to find a company on their own for the Training.

Course Learning Outcomes.

CO 1.

Enhance their employ ability skills and become job ready along with real corporate exposure.

CO 2.

Acquire knowledge in one particular technology.

CO 3.

Demonstrate leadership ability and responsibility to perform the given task.

CO 4.

Offered jobs in the organizations in which they undergo their Industrial Training.

CO 5.

Demonstrate common practices, employment opportunities and work ethics in their relevant

Scheme for in Semester Assessment(ISA) and End Semester Assessment (ESA)

Course	Course	Max ISA	Max ESA	Minimum Passing Marks
	Code	marks	marks	
Industry Training	18ECSI493	50	50	Students must secure
				minimum of 40% marks in
				both ISA and ESA.

KLE Technological University's Industry Internship: Rules, Regulations and Timelines for BE2020 passing out students-

Internship Start Date: 6th January,2020

Internship End Date: 31st May,2020 (exceptional cases up to 30th June,2020)

<u>Total Duration</u>: 5 monthsfull time (No breaks)

- 1. Students of 8thsemester are permitted to opt for full-time Industry Internship.
- 2. Internship duration is for one full semester. Student-intern is available with the Industry for full time
- 3. The internship has 2 mandatory components-- i) Internship- Training and ii) Internship Project
 - i) Internship-Training: Industry is free to decide topics for the training. E.g. topics such as learning tools/ framework/programming language /Industrial practices/ literature survey etc. or any pre- requisites required to carry out the Internship Project.
 - ii) Internship Project: Industry has to assign a well-defined problem statement for the Project and shall provide an industry mentor (called as Industry Guide) to execute the project. University will also assign a University faculty as co-guide (called as University Guide). University guide in consultation with Industry Guide has to review the project progress at regular intervals using Skype/ Webexor personal visit to the industry.
- 4. Expectations at the end of the Internship
 - a) Student has to submit 'Internship Training Report' & 'Internship Project Report' to the University. Contents of the Reports shall be decided in consultation with Industry Guide.
 - b) The industry is expected to provide the student performance evaluation as follows:
 - a) "Internship- Training" Marks (Out of 100)
 - b) "Internship Project" Marks (Out of 100)
 - c) Industry shall issue Internship Certificate to student-intern.

<u>BACK</u>

Program: Bachelor of Engineering Semester - VIII					
Course Title: Industry Project		Course Code: 20ECSI494			
L-T-P: 0-0-11	Credits: 11	Contact hrs: 22hrs/week			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching hrs:		Exam Duration: 3 hrs			
	Overview of the Course				
The purpose of providing the	e Industry Project is to give you	u the opportunity for students,			
to apply the knowledge, skil	Is and competencies they have	acquired, in real life practice.			
An Industry Project involves	a stay in a relevant company o	r organization.			
depending upon the need o	The students who got placed in campus interviews may be offered Industry Project depending upon the need of the company. Other students who wish to do Industry				
Project are responsible to find a company on their own.					
Course Learning Outcomes.					
CO 1. Identify the problem a	nd perform requirement analy	vsis			
CO 2. Design potential solut	ions and evaluate to select opt	imal solution			
CO 3. Apply professional nor	rms of project implementation	to meet specified			
requirements	requirements				
	CO 4. Apply fundamental activities of module, integration and system testing to validate				
the system					
	CO 5. Analyze results and present technical/scientific findings effectively through written				
and oral mode					

Scheme for in Semester Assessment(ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA	Max ESA	Minimum Passing Marks
		marks	marks	
Industry Project	18ECSW494	50	50	Students must secure
				minimum of 40% marks in
				both ISA and ESA.

KLE Technological University's Industry Internship: Rules, Regulations and Timelines for BE2020 passing out students-

Internship Start Date: 6th January,2020

Internship End Date: 31st May,2020 (exceptional cases up to 30th June,2020)

Total Duration: 5 monthsfull time (No breaks)

- 1. Students of 8thsemester are permitted to opt for full-time Industry Internship.
- 2. Internship duration is for one full semester. Student-intern is available with the Industry for full time
- The internship has 2 mandatory components-- i) Internship- Training and ii) Internship
 Project
 - i) Internship- Training: Industry is free to decide topics for the training. E.g. topics such as learning tools/ framework/programming language /Industrial practices/ literature survey etc. or any pre- requisites required to carry out the Internship Project.
 - ii) Internship Project: Industry has to assign a well-defined problem statement for the Project and shall provide an industry mentor (called as Industry Guide) to execute the project. University will also assign a University faculty as co-guide (called as University Guide). University guide in consultation with Industry Guide has to review the project progress at regular intervals using Skype/ Webexor personal visit to the industry.
- 4. Expectations at the end of the Internship
 - a) Student has to submit 'Internship Training Report' & 'Internship Project Report' to the University. Contents of the Reports shall be decided in consultation with Industry Guide.
 - b) The industry is expected to provide the student performance evaluation as follows:
 - a) "Internship- Training" Marks (Out of 100)
 - b) "Internship Project" Marks (Out of 100)
 - c) Industry shall issue Internship Certificate to student-intern.

Program: Bachelor of Engineeri	Semester - VIII	
Course Title: Capstone Project		Course Code: 20ECSW402
L-T-P: 0-0-11 Credits: 11		Contact Hrs: 3hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching hrs:	Tutorial/Practical: 42 hrs	Exam Duration: 3hrs

Eighth Semester Capstone project:Design a suitable solution for the identified problem and apply professional norms of project implementation to meet specified requirements.

Project domains:

Networking	Data Engineering	System Engineering	
Internet of ThingsCloud Computing	• Data Analytics Data Processing:	Parallel ComputingHPC(High	
 SDN(Software Defined Network) 	 Image and video processing 	Performance Computing)	
 SNA(Social Network Analysis) 	 Computer Vision and Graphics NLP(Natural 	 Parallel system design 	
	Language Processing)		

Students Assessment through ISA (50%) + ESA (50%)

	Assessment	Weightage in Marks
Internal Semester Assessment*	Periodic reviews by Project	25
(50%)	Guide	23
	Periodic reviews by	25
	Committee	25
End Semester Assessment (50%)	Final Review	50
Lifu Semester Assessment (50%)	Total	100

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation	
Review-1	Motivation, Literature Survey, Problem Analysis and Problem	
Review-1	formulation, Objectives, Oral Communication	
	High Level Design/Methodology, Suitable data structures and	
Review-2	programming paradigm, Modern tools & techniques used,	
Neview-2	Module implementation & amp; integration, Presentation &	
	Report	
Review-3	Complete Project Demo, Report, Presentation / Paper Publication	

Scheme for End Semester Assessment (ESA)

SI.No	Expectation	Marks
1	Literature Survey/ Existing Methods	15
2	Methodology and Implementation details, Results and Discussions	20
3	Project demonstration.	10
4.	Relevance of project to ethical/ social/ legal/ economic concerns	05
	Total	50

Open Electives

		Open Liectives		
Prog	ram: Bachelor of Engine	ering		
	se Title: High Performan ications	ce Computing for Engineering	Course Code:15ECS	0404
L-T-P	: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/	week
ISA N	Aarks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 40	Tutorial/Practical hrs:	Exam Duration: 3h	rs
		Unit –I		
1	Engineering Application Computational Comp Granularity and Partiti	Performance Computing: Computing: computing: characteristics and requirelexity, Performance: metrics oning, Locality: temporal/spatial, programming, Real-world castalysis etc.	rements, Review of and measurements, /stream/kernel, Basic	8hrs
2	High Performance Computing Systems: Memory Hierarchies, Multi-core Processors: Homogeneous and Heterogeneous, Shared-memory Symmetric Multiprocessors, Vector Computers, Distributed Memory Computers,			
		Unit –II		
3	Techniques: Balancec Partitioning, Regular Irregular Algorithms: I	Parallel models: ideal and rea Trees, Pointer Jumping, Di Algorithms: Matrix operations Lists, Trees, Graphs, Randomizat rators, Sorting, Monte Carlo tech	vide and Conquer, and Linear Algebra, ion: Parallel Pseudo-	8hrs
4	Parallel Programming Functional Parallelism,	: Revealing concurrency in ap Task Scheduling, Synchronization operations), SPMD Programming	plications, Task and on Methods, Parallel	8hrs
		Unit –III		
5	bottlenecks, Restruct	e: Measuring performance, Ider uring applications for deep n ons for heterogeneous resour meworks	nemory hierarchies,	4hrs
6	Case Studies and Proje various engineering dis	cts done during the course: Vario	ous case studies from	4hrs
	1			

Text Books

- 1. Introduction to Parallel Computing, AnanthGrama, Anshul Gupta, George Karypis, and Vipin Kumar, 2nd edition, Addison-Welsey, 2003.
- 2. Petascale Computing: Algorithms and Applications, David A. Bader (Ed.), Chapman & Hall/CRC Computational Science Series, 2007

Reference Books:

- 1. G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation, Cambridge University Press, 2003.
- 2. M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2004.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of	Chapter	Instructions
	20 Marks Each	numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	Solve Any 1
111	Q.No8	6	

Progra	am: Bachelor of Engine	eering		
Course	e Title: Software Engin	eering	Course Code: 15ECSO	403
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3hrs/week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Tutorial/Practical hrs:	Exam Duration: 3 hrs	
		Unit –I		
1	Software Engineering process:Professional software development, Software engineering ethics, Case studies, Software processes: Software process models, Process activities, Coping with change, The rational unified process, Continuous Integration and Continuous Deployment and Tools.6hrs			
2	Agile Software Development: Agile methods, Plan-driven and agile development, Extreme programming, Agile project management.4 hrs			
3	Requirement Engineering: Functional and Non-functional requirements;The software requirements Document, Requirement specification,Requirements Engineering Processes, Requirement's elicitation andanalysis; Requirements validation; Requirements management.			
		Unit –II		
4	System Modeling: Co Behavioral models.	ontext models, Interaction Mod	dels, Structural models,	6 hr
5	Architectural Design: Architectural Design Decision, Architectural views, Architectural patterns, Application Architectures.			5 hrs
6	Object-Oriented design and implementation: Object oriented design using UML, design patterns, Implementation Issues, Open source development.			5 hr
Unit –III				
7	Software Testing: De Testing, User Testing	evelopment Testing, Test Driver	n Development, Release	4 hr
8	Configuration management: Change management, Version management, System building, Release management.			4 hr

Text Books:

1. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

Reference Books:

- Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw,2007
- 2. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 3rd, Pearson Ed, 2006
- 3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
111	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	

Scheme for End Semester Assessment (ESA)

Program: Bachelor of Engineering				
Course Title: Essentials of Information Technology Course Code: 15ECSO40)5
L-T-P: 3-0-0 Credits: 3		Credits: 3	Contact Hrs: 6hrs/week	
ISA Marks: 80		ESA Marks: 20 Total Marks: 100		
Teaching Hrs:		Tutorial/Practical hrs: 84	Exam Duration: 3 hrs	
		Unit - I		
1	Introduction to computer systems: Components of computer systems, program execution cycle, computer networks, software and its classification, Operating System: introduction, memory management, process management, file management.			6 hrs
2	Programming basics: Introduction to problem solving, SDLC overview and need for object oriented approach, object oriented concepts, introduction to java, control structures, arrays, strings.6			6 hrs
3	Classes and Objects: Class fundamentals, access specifiers, constructors and its types, method overloading, static members.			4 hrs
	Unit – II			
4	Data structures: Introduction, Linear data structures: stack, queue, linked lists, Non-Linear data structures: trees, binary search tree, illustration using java collection framework.			5 hrs
5	Inheritance and Polymorphism: Inheritance: basics, types of inheritance, method overloading and overriding, dynamic method dispatch.			5 hrs
6	Packages, Interfaces and Exceptions: Introduction to packages, access protection, interfaces, exception handling mechanism, and user defined exceptions.			6 hrs
Unit - III				
7	-	Process: Characteristics of DBMS, al schema, normalization.	ER model, mapping ER	4 hrs
8	Structured Query Language: SQL data types, database languages, operators, 4 hrs aggregate functions, order by and group by clause, joins and sub queries.			4 hrs

Text Books:

- 1. Infosys Campus Connect Foundation Program Volume:1–3, Education and Research Department, Infosys Technologies Ltd, 2013.
- **2.** Herbert Schildt, "Java The Complete Reference", 8th Edition, McGraw-Hill, 2012.

Reference Books:

- **1.** Elmasri. and Navathe, "Fundamentals of Database Systems", 6th Edition, Pearson Education, 2011.
- **2.** Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Edition, Wiley, 2009.

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set of 10 Marks Each	Chapter Numbers	Instructions
I	Project Examination	4 - 8	Project implementation and demonstration 20 marks

Prog	gram: Bachelor of Engineerir	ng		
Title: Big Data Analytics Course Code: 18ECSO40				
L-T-F	P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	hing Hrs: 40	Tutorial/Practical hrs:	Exam Duration: 3hrs	
		Unit –I		
1	Introduction: Data Analytics, Data Analytics Life Cycle, Big Data Characteristics, Different Types of Data.			
2	Big Data Technologies: Parallel Data Processing, Distributed Data Processing, Hadoop , Spark 8hrs			
3	Nosql: NoSQL Databases, Document databases, Key-value databases, Wide- column stores, Graph databases			4 hrs
		Unit –II		
4	Big Data Modeling:Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time8 hrMode.MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in			8 hrs
5	MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language.			8 hrs
		Unit –III		
6	Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL).			4 hrs
7	Big data applications and case study: Stock market analysis, weather data analysis			4 hrs
Text	Books:			
 Thomas Erl, WajidKhattak, and Paul Buhler, Big Data Fundamentals Concepts, Drivers & Techniques, Prentice Hall, 2015. 				
2. SeemaAcharya, SubhashiniChellappan, Big Data &Analytics, Wiley India Pvt Ltd 2014				
Reference Books:				
1. Frank J Ohlhorst, Big Data and Analytics: Turning Big Data into Big Money, Wiley and SAS Business Series, 2012.				
 Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, Elsevier, 2007. 				

Scheme for End Semester Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
	Q.No7	6	Solve Any 1 out of 2
	Q.No8	7	Solve Any I but of 2